File size: 1,933 Bytes
e82a10b
 
7cabdf8
 
c6e8f4b
62c5fe5
 
a07bb4e
 
12fb4a0
 
 
 
358c707
97a4aa1
12fb4a0
 
 
 
b5cd954
97a4aa1
ea06354
 
 
c7bde51
358c707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea06354
12fb4a0
 
e560fe9
12fb4a0
 
 
 
7b17be9
12fb4a0
 
 
 
 
 
 
 
 
 
 
358c707
97a4aa1
12fb4a0
 
 
 
 
e560fe9
 
 
12fb4a0
f94f89d
 
e6bccda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
from huggingface_hub import InferenceClient

# Inference

model_text = "google/gemma-3-27b-it"
#model_text = "google/gemma-2-27b-it"

client = InferenceClient()

def fn_text(
    prompt,
    history,
    input,
    #system_prompt,
    max_tokens,
    temperature,
    top_p,
):
    
    #messages = [{"role": "system", "content": system_prompt}]
    #history.append(messages[0])
    #messages.append({"role": "user", "content": prompt})
    #history.append(messages[1])

    #messages = [{"role": "user", "content": prompt}]
    
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": prompt
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": input
                    }
                }
            ]
        }
    ]
    history.append(messages[0])
    
    stream = client.chat.completions.create(
        model = model_text,
        messages = history,
        max_tokens = max_tokens,
        temperature = temperature,
        top_p = top_p,
        stream = True,
    )
    
    chunks = []
    for chunk in stream:
        chunks.append(chunk.choices[0].delta.content or "")
        yield "".join(chunks)

app_text = gr.ChatInterface(
    fn = fn_text,
    type = "messages",
    additional_inputs = [
        gr.Textbox(label="Input"),
        #gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
    ],
    title = "Google Gemma",
    description = model_text,
)

app = gr.TabbedInterface(
    [app_text],
    ["Text"]
).launch()