import os from threading import Event, Thread from transformers import ( AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, ) import gradio as gr import torch model_name = os.getenv("HF_MODEL_NAME", None) tok = AutoTokenizer.from_pretrained(model_name) max_new_tokens = 1024 print(f"Starting to load the model {model_name}") m = AutoModelForCausalLM.from_pretrained( model_name, device_map=0, #load_in_8bit=True, ) m.config.pad_token_id = m.config.eos_token_id m.generation_config.pad_token_id = m.config.eos_token_id stop_tokens = [";", "###", "Result"] stop_token_ids = tok.convert_tokens_to_ids(stop_tokens) print(f"Successfully loaded the model {model_name} into memory") class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: for stop_id in stop_token_ids: if input_ids[0][-1] == stop_id: return True return False def bot(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, repetition_penalty=1.08): stop = StopOnTokens() # Format the user's input message messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n" input_ids = tok(messages, return_tensors="pt").input_ids input_ids = input_ids.to(m.device) streamer = TextIteratorStreamer(tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=temperature > 0.0, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, streamer=streamer, stopping_criteria=StoppingCriteriaList([stop]), ) stream_complete = Event() def generate_and_signal_complete(): m.generate(**generate_kwargs) stream_complete.set() t1 = Thread(target=generate_and_signal_complete) t1.start() partial_text = "" for new_text in streamer: partial_text += new_text # Split the text by "|", and get the last element in the list which should be the final query final_query = partial_text.split("|")[1].strip() # Convert SQL to markdown (not required, but just to show how to use the markdown module) final_query_markdown = f"```sql\n{final_query}\n```" return final_query_markdown with gr.Blocks() as demo: input_text = gr.Textbox(lines=5, placeholder='Input text here...', label='Input Text') db_info = gr.Textbox(lines=5, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info') temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.1, step=0.1) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01) top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1) repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.1) output_box = gr.Markdown(label="Generated SQL Query") run_button = gr.Button("Generate SQL Query") run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box) demo.launch()