Commit
·
66983ee
1
Parent(s):
d119dc4
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,7 @@ from transformers import (
|
|
| 10 |
from huggingface_hub import login
|
| 11 |
import gradio as gr
|
| 12 |
import torch
|
|
|
|
| 13 |
|
| 14 |
login(os.getenv("HF_TOKEN", None))
|
| 15 |
|
|
@@ -76,34 +77,27 @@ def bot(input_message: str, temperature=0.1, top_p=0.9, top_k=0, repetition_pena
|
|
| 76 |
|
| 77 |
# Split the text by "|", and get the last element in the list which should be the final query
|
| 78 |
final_query = partial_text.split("|")[-1].strip()
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
gradio_interface = gr.Interface(
|
| 83 |
fn=bot,
|
| 84 |
inputs=[
|
| 85 |
-
gr.Textbox(
|
| 86 |
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.1, step=0.1),
|
| 87 |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01),
|
| 88 |
gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1),
|
| 89 |
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.1)
|
| 90 |
],
|
| 91 |
-
outputs=
|
| 92 |
title="SQL Skeleton WizardCoder Demo",
|
| 93 |
description="""This interactive tool translates natural language instructions into SQL queries, using a trained model. Type or paste your instructions into the text box and click 'Submit' to generate SQL queries. Use the sliders to adjust the model's temperature, top-p, top-k, and repetition penalty values.""",
|
| 94 |
examples=[
|
| 95 |
-
|
| 96 |
-
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request
|
| 97 |
-
|
| 98 |
-
],
|
| 99 |
-
[
|
| 100 |
-
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Convert text to sql: Show location and name for all stadiums with a capacity between 5000 and 10000. | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id | ### Response: ",
|
| 101 |
-
0.1, 0.9, 0, 1.08
|
| 102 |
-
],
|
| 103 |
-
[
|
| 104 |
-
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Convert text to sql: What are the number of concerts that occurred in the stadium with the largest capacity ? | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id | ### Response: ",
|
| 105 |
-
0.1, 0.9, 0, 1.08
|
| 106 |
-
]
|
| 107 |
]
|
| 108 |
)
|
| 109 |
gradio_interface.launch()
|
|
|
|
| 10 |
from huggingface_hub import login
|
| 11 |
import gradio as gr
|
| 12 |
import torch
|
| 13 |
+
import markdown
|
| 14 |
|
| 15 |
login(os.getenv("HF_TOKEN", None))
|
| 16 |
|
|
|
|
| 77 |
|
| 78 |
# Split the text by "|", and get the last element in the list which should be the final query
|
| 79 |
final_query = partial_text.split("|")[-1].strip()
|
| 80 |
+
# Convert SQL to markdown (not required, but just to show how to use the markdown module)
|
| 81 |
+
final_query_markdown = f'```sql\n{final_query}\n```'
|
| 82 |
+
return markdown.markdown(final_query_markdown)
|
| 83 |
|
| 84 |
|
| 85 |
gradio_interface = gr.Interface(
|
| 86 |
fn=bot,
|
| 87 |
inputs=[
|
| 88 |
+
gr.Textbox(lines=20, placeholder='Input text here...', label='Input Text'),
|
| 89 |
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.1, step=0.1),
|
| 90 |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01),
|
| 91 |
gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1),
|
| 92 |
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.1)
|
| 93 |
],
|
| 94 |
+
outputs=gr.outputs.Markdown(),
|
| 95 |
title="SQL Skeleton WizardCoder Demo",
|
| 96 |
description="""This interactive tool translates natural language instructions into SQL queries, using a trained model. Type or paste your instructions into the text box and click 'Submit' to generate SQL queries. Use the sliders to adjust the model's temperature, top-p, top-k, and repetition penalty values.""",
|
| 97 |
examples=[
|
| 98 |
+
["Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: What is the average, minimum, and maximum age for all French singers? | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id | \n\n### Response:\n\n"],
|
| 99 |
+
["Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: Show location and name for all stadiums with a capacity between 5000 and 10000. | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id | \n\n### Response:\n\n"],
|
| 100 |
+
["Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: What are the number of concerts that occurred in the stadium with the largest capacity ? | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id | \n\n### Response:\n\n"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
]
|
| 102 |
)
|
| 103 |
gradio_interface.launch()
|