Commit
·
4592479
1
Parent(s):
ec5de02
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ import torch
|
|
| 13 |
model_name = os.getenv("HF_MODEL_NAME", None)
|
| 14 |
tok = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
|
| 16 |
-
max_new_tokens =
|
| 17 |
|
| 18 |
print(f"Starting to load the model {model_name}")
|
| 19 |
|
|
@@ -78,27 +78,15 @@ def bot(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, rep
|
|
| 78 |
final_query_markdown = f"```sql\n{final_query}\n```"
|
| 79 |
return final_query_markdown
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
title="SQL Skeleton WizardCoder Demo",
|
| 94 |
-
description="""This interactive tool translates natural language instructions into SQL queries, using a trained model. Type or paste your instructions into the text box and click 'Submit' to generate SQL queries. Use the sliders to adjust the model's temperature, top-p, top-k, and repetition penalty values.""",
|
| 95 |
-
examples = [
|
| 96 |
-
["What is the average, minimum, and maximum age for all French singers?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
| 97 |
-
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
| 98 |
-
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
| 99 |
-
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
| 100 |
-
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"]
|
| 101 |
-
]
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
gradio_interface.launch()
|
|
|
|
| 13 |
model_name = os.getenv("HF_MODEL_NAME", None)
|
| 14 |
tok = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
|
| 16 |
+
max_new_tokens = 1024
|
| 17 |
|
| 18 |
print(f"Starting to load the model {model_name}")
|
| 19 |
|
|
|
|
| 78 |
final_query_markdown = f"```sql\n{final_query}\n```"
|
| 79 |
return final_query_markdown
|
| 80 |
|
| 81 |
+
with gr.Blocks() as demo:
|
| 82 |
+
input_text = gr.Textbox(lines=5, placeholder='Input text here...', label='Input Text')
|
| 83 |
+
db_info = gr.Textbox(lines=5, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
| 84 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.1, step=0.1)
|
| 85 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
| 86 |
+
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
| 87 |
+
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.1)
|
| 88 |
+
output_box = gr.Markdown(label="Generated SQL Query")
|
| 89 |
+
run_button = gr.Button("Generate SQL Query")
|
| 90 |
+
run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box)
|
| 91 |
+
|
| 92 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|