|
import gradio as gr |
|
|
|
def bot(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, repetition_penalty=1.08, format_sql=True, stop_sequence="Explanation,Note", log=True): |
|
|
|
final_query = "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |" |
|
final_query_markdown = f"{final_query}" |
|
return final_query_markdown |
|
|
|
|
|
with gr.Blocks(theme='gradio/soft') as demo: |
|
|
|
header = gr.HTML(""" |
|
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1> |
|
<h3 style="text-align: center">π·οΈβ οΈπ§ββοΈ Generate SQL queries from Natural Language π·οΈβ οΈπ§ββοΈ</h3> |
|
""") |
|
|
|
output_box = gr.Code(label="Generated SQL", lines=2, interactive=True) |
|
note = gr.HTML("""<p style="font-size: 12px; text-align: center">β οΈ Should take 30-60s to generate</p>""") |
|
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input') |
|
db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info') |
|
format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True) |
|
|
|
|
|
run_button = gr.Button("Generate SQL", variant="primary") |
|
|
|
with gr.Accordion("Options", open=False): |
|
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.2, step=0.1) |
|
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01) |
|
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1) |
|
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01) |
|
stop_sequence = gr.Textbox(lines=1, value="Explanation,Note", label='Extra Stop Sequence') |
|
|
|
|
|
info = gr.HTML(f""" |
|
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p> |
|
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p> |
|
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p> |
|
<p>π All inputs/outputs are logged to Firebase to see how the model is doing.</a></p> |
|
""") |
|
|
|
examples = gr.Examples([ |
|
["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"], |
|
["How many students have dogs?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid | pets.pettype = 'Dog' |"], |
|
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], fn=generate, cache_examples=False if platform.system() == "Windows" or platform.system() == "Darwin" else True, outputs=output_box) |
|
|
|
with gr.Accordion("More Examples", open=False): |
|
examples = gr.Examples([ |
|
["What is the average weight of pets of all students?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"], |
|
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"], |
|
["For students who have pets, how many pets does each student have? List their ids instead of names.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"], |
|
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"], |
|
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"], |
|
["Which student has the oldest pet?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"], |
|
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"], |
|
["List all students who don't have pets.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"], |
|
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], fn=bot, cache_examples=False, outputs=output_box) |
|
|
|
|
|
readme_content = requests.get(f"https://huggingface.co/{merged_model}/raw/main/README.md").text |
|
readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL) |
|
|
|
with gr.Accordion("π Model Readme", open=True): |
|
readme = gr.Markdown( |
|
readme_content, |
|
) |
|
|
|
with gr.Accordion("More Options:", open=False): |
|
log = gr.Checkbox(label="Log to Firebase", value=True, interactive=True) |
|
|
|
|
|
run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence, log], outputs=output_box, api_name="txt2sql") |
|
|
|
|
|
demo.queue(concurrency_count=1, max_size=20).launch(debug=True) |