File size: 10,725 Bytes
1e3f569
 
 
 
 
dd9d480
cda468b
 
 
dd9d480
340d82e
 
 
 
 
 
1e3f569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de09581
1e3f569
 
 
eaeb469
8a85885
 
1e3f569
 
 
 
 
 
 
 
8a85885
1e3f569
 
8a85885
1e3f569
eaeb469
 
 
 
1e3f569
83c6516
1e3f569
 
 
 
 
 
 
e38b480
 
 
 
1e3f569
 
 
 
 
 
dd9d480
1e3f569
8a85885
1e3f569
 
dd9d480
1e3f569
 
 
cda468b
1e3f569
 
 
e38b480
de09581
1e3f569
 
 
e38b480
8a85885
 
 
1e3f569
8a85885
e38b480
1e3f569
340d82e
 
 
 
 
 
1e3f569
 
e4fb671
e38b480
de09581
e38b480
 
 
 
 
 
1e3f569
 
e38b480
 
 
 
1e3f569
 
dd9d480
 
1e3f569
dd9d480
 
 
 
1e3f569
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import gradio as gr
import sqlparse
import requests
from time import sleep
import re
import platform

print(f"Running on {platform.system()}")

quantized_model = "richardr1126/spider-skeleton-wizard-coder-ggml"
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
initial_model = "WizardLM/WizardCoder-15B-V1.0"
lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
dataset = "richardr1126/spider-skeleton-context-instruct"

def format(text):
    # Split the text by "|", and get the last element in the list which should be the final query
    try:
        final_query = text.split("|")[1].strip()
    except Exception:
        final_query = text

    try:
        # Attempt to format SQL query using sqlparse
        formatted_query = sqlparse.format(final_query, reindent=True, keyword_case='upper')
    except Exception:
        # If formatting fails, use the original, unformatted query
        formatted_query = final_query

    # Convert SQL to markdown (not required, but just to show how to use the markdown module)
    final_query_markdown = f"{formatted_query}"

    return final_query_markdown

def generate(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, repetition_penalty=1.08, format_sql=True, stop_sequence="###"):
    # Format the user's input message
    messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"

    url = "https://e9f4be879d38-8269039109365193683.ngrok-free.app/api/v1/generate"
    stop_sequence = stop_sequence.split(",")
    stop = ["###"] + stop_sequence
    payload = {
        "prompt": messages,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "top_a": 0,
        "n": 1,
        "max_context_length": 2048,
        "max_length": 256,
        "rep_pen": repetition_penalty,
        "sampler_order": [6,0,1,3,4,2,5],
        "stop_sequence": stop,
    }
    headers = {
        "Content-Type": "application/json",
        "ngrok-skip-browser-warning": "1"  # added this line
    }

    for _ in range(3): # Try 3 times
        try:
            response = requests.post(url, json=payload, headers=headers)
            response_text = response.json()["results"][0]["text"]
            response_text = response_text.replace("\n", "").replace("\t", " ")
            if response_text and response_text[-1] == ".":
                response_text = response_text[:-1]

            if format_sql:
                return format(response_text)
            else:
                return response_text
            
        except Exception as e:
            print(f'Error occurred: {str(e)}')
            print('Waiting for 10 seconds before retrying...')
            sleep(10)

# Gradio UI Code
with gr.Blocks(theme='gradio/soft') as demo:
    # Elements stack vertically by default just define elements in order you want them to stack
    header = gr.HTML("""
        <h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
        <h3 style="text-align: center">πŸ•·οΈβ˜ οΈπŸ§™β€β™‚οΈ Generate SQL queries from Natural Language πŸ•·οΈβ˜ οΈπŸ§™β€β™‚οΈ</h3>
    """)

    output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
    note = gr.HTML("""<p style="font-size: 12px; text-align: center">⚠️ Should take 30-60s to generate</p>""")
    input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
    db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')

    with gr.Accordion("Options", open=False):
        temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
        top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
        top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
        repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
        format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True)
        stop_sequence = gr.Textbox(lines=1, value="Explanation,Note", label='Extra Stop Sequence')
    
    # Generate button UI element
    run_button = gr.Button("Generate SQL", variant="primary")
    # When the button is clicked, call the generate function, inputs are taken from the UI elements, outputs are sent to outputs elements
    run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], outputs=output_box, api_name="txt2sql")
    
    info = gr.HTML(f"""
        <p>🌐 Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
        <p>πŸ”— How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
        <p>πŸ“‰ Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
    """)

    with gr.Accordion("Examples", open=True):
        examples = gr.Examples([
            ["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
            ["How many students have dogs?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid | pets.pettype = 'Dog' |"],
            ["What is the average weight of pets of all students?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
            ["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
        ], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], fn=generate, cache_examples=False if platform.system() == "Windows" or platform.system() == "Darwin" else True, outputs=output_box)

    with gr.Accordion("More Examples", open=False):
        examples = gr.Examples([
            ["For students who have pets, how many pets does each student have? List their ids instead of names.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
            ["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
            ["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
            ["Which student has the oldest pet?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
            ["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
            ["List all students who don't have pets.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
        ], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], fn=generate, cache_examples=False, outputs=output_box)


    readme_content = requests.get(f"https://huggingface.co/{merged_model}/raw/main/README.md").text
    readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL) #Remove YAML front matter

    with gr.Accordion("πŸ“– Model Readme", open=True):
        readme = gr.Markdown(
            readme_content,
        )

demo.queue(concurrency_count=1, max_size=10).launch(debug=True)