File size: 8,265 Bytes
1e3f569
 
 
 
 
dd9d480
 
 
1e3f569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd9d480
1e3f569
 
 
eaeb469
1e3f569
 
 
 
 
 
 
 
 
 
 
 
 
eaeb469
 
 
 
1e3f569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd9d480
1e3f569
 
 
dd9d480
1e3f569
 
 
 
 
 
 
ef53845
1e3f569
 
 
 
 
dd9d480
1e3f569
 
 
e4fb671
1e3f569
 
 
 
dd9d480
1e3f569
 
 
 
 
 
 
 
 
 
 
 
dd9d480
1e3f569
 
dd9d480
 
1e3f569
dd9d480
 
 
 
1e3f569
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import gradio as gr
import sqlparse
import requests
from time import sleep
import re



def format(text):
    # Split the text by "|", and get the last element in the list which should be the final query
    try:
        final_query = text.split("|")[1].strip()
    except Exception:
        final_query = text

    try:
        # Attempt to format SQL query using sqlparse
        formatted_query = sqlparse.format(final_query, reindent=True, keyword_case='upper')
    except Exception:
        # If formatting fails, use the original, unformatted query
        formatted_query = final_query

    # Convert SQL to markdown (not required, but just to show how to use the markdown module)
    final_query_markdown = f"{formatted_query}"

    return final_query_markdown

def generate(input_message: str, db_info="", temperature=0.3, top_p=0.9, top_k=0, repetition_penalty=1.08):
    # Format the user's input message
    messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"

    url = "https://e9f4be879d38-8269039109365193683.ngrok-free.app/api/v1/generate"
    payload = {
        "prompt": messages,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "top_a": 0,
        "n": 1,
        "max_context_length": 2048,
        "max_length": 512,
        "rep_pen": repetition_penalty,
        "sampler_order": [6,0,1,3,4,2,5],
        "stop_sequence": ["###", "Result"],
    }
    headers = {
        "Content-Type": "application/json",
        "ngrok-skip-browser-warning": "1"  # added this line
    }

    for _ in range(3):
        try:
            response = requests.post(url, json=payload, headers=headers)
            response_text = response.json()["results"][0]["text"]
            response_text = response_text.replace("\n", "").replace("\t", " ")
            if response_text and response_text[-1] == ".":
                response_text = response_text[:-1]

            return format(response_text)
            
        except Exception as e:
            print(f'Error occurred: {str(e)}')
            print('Waiting for 10 seconds before retrying...')
            sleep(10)

# Gradio UI Code
with gr.Blocks(theme='gradio/soft') as demo:
    header = gr.HTML("""
        <h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
        <h3 style="text-align: center">πŸ•·οΈβ˜ οΈπŸ§™β€β™‚οΈ Generate SQL queries from Natural Language πŸ•·οΈβ˜ οΈπŸ§™β€β™‚οΈ</h3>
    """)

    output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
    input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
    db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')

    with gr.Accordion("Hyperparameters", open=False):
        temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.3, step=0.1)
        top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
        top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
        repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
        
    run_button = gr.Button("Generate SQL", variant="primary")
    run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box, api_name="txt2sql")
    
    with gr.Accordion("Examples", open=True):
        examples = gr.Examples([
            ["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
            ["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
            ["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
            ["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
            ["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"]
        ], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], fn=generate, cache_examples=True, outputs=output_box)

    quantized_model = "richardr1126/spider-skeleton-wizard-coder-ggml"
    merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
    initial_model = "WizardLM/WizardCoder-15B-V1.0"
    lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
    dataset = "richardr1126/spider-skeleton-context-instruct"
    
    footer = gr.HTML(f"""
        <p>πŸ› οΈ If you want you can <strong>duplicate this Space</strong>, then change the HF_MODEL_REPO spaces env varaible to use any GGML model.</p>
        <p>🌐 Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
        <p>πŸ”— How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
        <p>πŸ“‰ Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>

    """)

    readme_content = requests.get(f"https://huggingface.co/{merged_model}/raw/main/README.md").text
    readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL) #Remove YAML front matter

    with gr.Accordion("πŸ“– Model Readme", open=True):
        readme = gr.Markdown(
            readme_content,
        )

demo.queue(concurrency_count=1, max_size=10).launch(debug=True)