File size: 8,436 Bytes
1e3f569 dd9d480 cda468b dd9d480 340d82e 1e3f569 dd9d480 1e3f569 eaeb469 1e3f569 eaeb469 1e3f569 83c6516 1e3f569 dd9d480 1e3f569 32c2894 1e3f569 dd9d480 1e3f569 cda468b 1e3f569 ef53845 1e3f569 dd9d480 1e3f569 340d82e 1e3f569 e4fb671 1e3f569 340d82e 1e3f569 dd9d480 1e3f569 dd9d480 1e3f569 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import os
import gradio as gr
import sqlparse
import requests
from time import sleep
import re
import platform
print(f"Running on {platform.system()}")
quantized_model = "richardr1126/spider-skeleton-wizard-coder-ggml"
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
initial_model = "WizardLM/WizardCoder-15B-V1.0"
lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
dataset = "richardr1126/spider-skeleton-context-instruct"
def format(text):
# Split the text by "|", and get the last element in the list which should be the final query
try:
final_query = text.split("|")[1].strip()
except Exception:
final_query = text
try:
# Attempt to format SQL query using sqlparse
formatted_query = sqlparse.format(final_query, reindent=True, keyword_case='upper')
except Exception:
# If formatting fails, use the original, unformatted query
formatted_query = final_query
# Convert SQL to markdown (not required, but just to show how to use the markdown module)
final_query_markdown = f"{formatted_query}"
return final_query_markdown
def generate(input_message: str, db_info="", temperature=0.3, top_p=0.9, top_k=0, repetition_penalty=1.08):
# Format the user's input message
messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"
url = "https://e9f4be879d38-8269039109365193683.ngrok-free.app/api/v1/generate"
payload = {
"prompt": messages,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"top_a": 0,
"n": 1,
"max_context_length": 2048,
"max_length": 512,
"rep_pen": repetition_penalty,
"sampler_order": [6,0,1,3,4,2,5],
"stop_sequence": ["###", "Result"],
}
headers = {
"Content-Type": "application/json",
"ngrok-skip-browser-warning": "1" # added this line
}
for _ in range(3): # Try 3 times
try:
response = requests.post(url, json=payload, headers=headers)
response_text = response.json()["results"][0]["text"]
response_text = response_text.replace("\n", "").replace("\t", " ")
if response_text and response_text[-1] == ".":
response_text = response_text[:-1]
return format(response_text)
except Exception as e:
print(f'Error occurred: {str(e)}')
print('Waiting for 10 seconds before retrying...')
sleep(10)
# Gradio UI Code
with gr.Blocks(theme='gradio/soft') as demo:
# Elements stack vertically by default just define variables in order you want them to stack
header = gr.HTML("""
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
<h3 style="text-align: center">π·οΈβ οΈπ§ββοΈ Generate SQL queries from Natural Language π·οΈβ οΈπ§ββοΈ</h3>
""")
output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
note = gr.HTML("""<p style="font-size: 12px; text-align: center">β οΈ Should take 30-60s to generate</p>""")
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
with gr.Accordion("Hyperparameters", open=False):
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.3, step=0.1)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
run_button = gr.Button("Generate SQL", variant="primary")
run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box, api_name="txt2sql")
info = gr.HTML(f"""
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
""")
with gr.Accordion("Examples", open=True):
examples = gr.Examples([
["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"]
], inputs=[input_text, db_info, 0.0, top_p, top_k, repetition_penalty], fn=generate, cache_examples=False if platform.system() == "Windows" or platform.system() == "Darwin" else True, outputs=output_box)
readme_content = requests.get(f"https://huggingface.co/{merged_model}/raw/main/README.md").text
readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL) #Remove YAML front matter
with gr.Accordion("π Model Readme", open=True):
readme = gr.Markdown(
readme_content,
)
demo.queue(concurrency_count=1, max_size=10).launch(debug=True) |