File size: 9,178 Bytes
c379def
 
 
 
 
 
 
5408b2a
c379def
 
 
 
 
5408b2a
 
c379def
 
 
 
 
 
5408b2a
c379def
 
 
 
 
5408b2a
c379def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a880d2c
c379def
a880d2c
 
 
 
 
 
 
 
 
 
 
 
c379def
 
 
a880d2c
 
 
 
 
c379def
a880d2c
c379def
 
 
 
 
b12bbc3
c379def
 
 
 
 
b12bbc3
c379def
 
 
 
 
5408b2a
c379def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5408b2a
c379def
 
 
 
 
5408b2a
c379def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3af08fb
c379def
3af08fb
c379def
3af08fb
c379def
3af08fb
c379def
 
 
3af08fb
c379def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3af08fb
c379def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3af08fb
 
c379def
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import matplotlib.pyplot as plt
from PIL import ImageFont
from PIL import ImageDraw 
import multiprocessing
from PIL import Image
import numpy as np
import itertools
# import logging
import math
import cv2
import os


# logging.basicConfig(filename=f'{os.getcwd()}/frame_processing.log', level=logging.INFO)
# logging.info('Starting frame processing')
fps = 0
def read_file(name):
    global fps
    cap = cv2.VideoCapture(name)
    fps = cap.get(cv2.CAP_PROP_FPS)
    if not cap.isOpened():
        # logging.error("Cannot open Video")
        exit()
    frames = []
    while True:
        ret,frame = cap.read()
        if not ret:
            # logging.info("Can't receive frame (stream end?). Exiting ...")
            break
        frames.append(frame)

    cap.release()
    cv2.destroyAllWindows()
    for i in range(len(frames)):
        # print(frames[i].shape)
        frames[i]=cv2.cvtColor(frames[i], cv2.COLOR_BGR2GRAY)

    frames_with_index = [(frame, i) for i, frame in enumerate(frames)]
    return frames_with_index

st = [0,1,2,3,4]
dt = {}
idx = 0;
l = (tuple(i) for i in itertools.product(st, repeat=4) if tuple(reversed(i)) >= tuple(i))
l=list(l)
cnt = 0
for i in range(0,len(l)):
    lt=l[i]
    mirror = tuple(reversed(lt))
    dt[mirror]=i;
    dt[lt]=i;


def calc_filtered_img(img):
    # residual_img= np.zeros(img.shape)
    # residual_img = np.array(img);
    fil = np.array([[-1,3,-3,1]])
    residual_img = cv2.filter2D(img, -1, fil)
    # for i in range(img.shape[0]):
    #     for j in range(img.shape[1]):
    #         residual_img[i, j] = - 3*img[i, j];
    #         if(j>0):
    #             residual_img[i, j] += img[i, j-1]
    #         if(j+1<img.shape[1]):
    #             residual_img[i, j] += 3*img[i, j+1]
    #         if(j+2<img.shape[1]):
    #             residual_img[i,j]-= img[i, j+2]
    # residual_img = np.convolve(img,[1,-3,3,-1],mode='same')
    return residual_img

def calc_q_t_img(img, q, t):
    # qt_img = np.zeros(img.shape)
    # for i in range(img.shape[0]):
    #     for j in range(img.shape[1]):
            # val = np.minimum(t, np.maximum(-t, np.round(img[i, j]/q)))
    #         qt_img[i, j] = val
    # print(dct)
    qt_img = np.minimum(t, np.maximum(-t, np.round(img/q)))
    return qt_img

def process_frame(frame_and_index):
    frame, index = frame_and_index
    # processing logic for a single frame
    # logging.info(f"Processing frame {index}")
    filtered_image = calc_filtered_img(frame)
    output_image = calc_q_t_img(filtered_image, q, t)
    output_image=output_image+2
    # plt.imshow(output_image)
    return output_image.astype(np.uint8)

# Center the filtered image at zero by adding 128
q = 3
t = 2
def process_video(frames_with_index):
    num_processes = multiprocessing.cpu_count()
    # logging.info(f"Using {num_processes} processes")
    pool = multiprocessing.Pool(num_processes)  
    # process the frames in parallel
    processed_frames = pool.map(process_frame, frames_with_index)
    pool.close() 
    pool.join()
    processed_frame_with_index = [(frame, i) for i, frame in enumerate(processed_frames)]
    return processed_frame_with_index

co_occurrence_matrix_size = 5
co_occurrence_matrix_distance = 4
def each_frame(frame_and_index,processed_frames):
    # go rowise and column wise
    frame,index = frame_and_index
    freq_dict = {}
    for i in range( frame.shape[0]):
        for j in range( frame.shape[1]-co_occurrence_matrix_distance):
            row = frame[i]
            v1 = row[j:j+4]
            k1 = tuple(v1)
            freq_dict[k1]=freq_dict.get(k1,0)+1
    freq_dict2={}
    for i in range( frame.shape[0]-co_occurrence_matrix_distance):
        for j in range( frame.shape[1]):
            column = frame[:, j]
            v2 = column[i:i+4]
            k2 = tuple(v2)
            freq_dict2[k2]=freq_dict2.get(k2,0)+1
    freq_dict3={}
    for i in range( frame.shape[0]):
        for j in range( frame.shape[1]):
            # get next possible 4 frames
            if index < len(processed_frames)-3:
                f1 = processed_frames[index+1][i,j]
                f2 = processed_frames[index+2][i,j]
                f3 = processed_frames[index+3][i,j]
                k = (frame[i,j], f1, f2, f3)
                freq_dict3[k]=freq_dict3.get(k,0)+1
    # logging.info(f"hist made for frame {index}")
    return (freq_dict,freq_dict2,freq_dict3)

def extract_video(processed_frame_with_index):
    processed_frames = [frame for frame, index in processed_frame_with_index]
    num_processes = multiprocessing.cpu_count()
    # logging.info(f"Using2 {num_processes} processes")
    pool = multiprocessing.Pool(num_processes)  
    # process the frames in parallel
    freq_dict_list = pool.starmap(each_frame, zip(processed_frame_with_index,itertools.repeat(processed_frames)))
    pool.close() 
    pool.join()
    return freq_dict_list
def final(freq_dict_list):
    descriptors = []
    for freq_dicts in freq_dict_list:
        di1=[]
        for freq_dict in freq_dicts:
            frame = np.zeros(325);
            for(k,v) in freq_dict.items():
                frame[dt[k]]+=v
            di1.append(frame);
        descriptors.append(di1)
    descriptors=np.array(descriptors);
    desc_1d = descriptors.reshape(descriptors.shape[0],-1)
    mean_1d = np.mean(desc_1d,axis=0)
    co_variance_1d = np.zeros((1,1))
    for frame in desc_1d:
        mean_1d+=frame
    mean_1d=frame/len(desc_1d)
        
    for frame in desc_1d:
        tmp = frame-mean_1d
        co_variance_1d+=np.matmul(tmp,tmp.T)
    co_variance_1d=co_variance_1d/len(desc_1d)

    mean = np.zeros(descriptors[0].shape)
    co_variance = np.zeros((3,3))
    for frame in descriptors:
        mean+=frame
    mean=frame/len(descriptors)

    # print(mean)
    for frame in descriptors:
        tmp=frame-mean
        tc=np.matmul(tmp,tmp.T)
        co_variance+=tc

    co_variance=co_variance/len(descriptors)
    return (mean,co_variance,descriptors,mean_1d,co_variance_1d,desc_1d)

def final_main(input1,input2):
    f1 = read_file(input1) 
    of1 = read_file(input2)
    pf1 = process_video(f1)
    print("video1 processed residual and quantization")
    pof1=process_video(of1)
    print("video2 processed residual and quantization")
    fd1 = extract_video(pf1)
    print("video1 Created co-variance matrix")
    ofd1 = extract_video(pof1)
    print("video2 Created co-variance matrix")
    mean1,co_variance1,disc1,mean_1d_1,co_variance_1d_1,desc_1d_1=final(fd1)
    mean2,co_variance2,disc2,mean_1d_2,co_variance_1d_2,desc_1d_2=final(ofd1)
    distances = []
    print("creating Descriptors");
    for index,disc in enumerate(disc1):
        gm = disc - mean2
        dm = np.matmul(np.matmul(gm.T,np.linalg.inv(co_variance2)),gm)
        dm_sq = np.sqrt(np.abs(dm))
        distances.append(dm_sq)

    distances = np.array(distances)

    dist2 = []
    for index, disc in enumerate(disc2):
        gm = disc - mean2
        dm = np.matmul(np.matmul(gm.T,np.linalg.inv(co_variance2)),gm)
        dm_sq = np.sqrt(np.abs(dm))
        dist2.append(dm_sq)

    dist2 = np.array(dist2)
    fourcc = cv2.VideoWriter_fourcc(*'mp4v') 
    height =f1[0][0].shape[0]+of1[0][0].shape[0]
    width = 325+f1[0][0].shape[1]
    video = cv2.VideoWriter('video.mp4', fourcc, 30, (width,height))
    inital_diff,final_diff = 10000,-1
    result = ''
    print("writing video")
    for index, dist in enumerate(distances):
        heatmap = dist;
        frame,index = f1[index]
        different = False
        if index<len(of1):
            frame2 = of1[index][0]
            diff = dist - dist2[index]
            if not np.allclose(diff, np.zeros(diff.shape)):
                different = True
                inital_diff = min(inital_diff, index)
                final_diff = max(final_diff, index)
                sum1= np.sum(dist)
                sum2 = np.sum(dist2[index])
                    
        new_im = Image.new('RGB', (width, height))
        new_im.paste(Image.fromarray(frame), (0, 0))
        new_im.paste(Image.fromarray(frame2), (0, frame.shape[0]))
        heatmapshow = None
        heatmapshow = cv2.normalize(heatmap, heatmapshow, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
        heatmapshow = cv2.applyColorMap(heatmapshow, cv2.COLORMAP_JET)
        new_im.paste(Image.fromarray(heatmapshow), (frame.shape[1], 0))

        draw = ImageDraw.Draw(new_im)
        text = "The images are same."
        if different:
            text = "The images are different."
        text_width, text_height = draw.textsize(text)

        x = (new_im.width - text_width) / 2
        y = (new_im.height - text_height) / 2

        draw.text((x, y), text, fill=(255, 255, 255))

        new_im = np.array(new_im)
        video.write(new_im)
    outputString = ""
    if inital_diff != 10000:
        outputString+=f"Initial difference at frame {inital_diff} at time {inital_diff/fps} seconds"
        outputString+=f"Final difference at frame {final_diff} at time {final_diff/fps} seconds"
    video.release()
    if(outputString==""):
        outputString= "Not tampering are detected"
    return ("video.mp4",outputString)