File size: 6,268 Bytes
c2786e2
 
 
 
 
 
 
 
 
 
 
d4fbe32
c2786e2
d4fbe32
c2786e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7b9e64
 
 
c2786e2
d4fbe32
0026aa2
d7b9e64
c2786e2
 
 
d7b9e64
5d89dc0
c2786e2
 
 
d4fbe32
0026aa2
c2786e2
 
 
 
5d89dc0
c2786e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9e6174
c2786e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9e6174
c2786e2
 
 
 
 
 
d9e6174
c2786e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262b155
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Authors: Hui Ren (rhfeiyang.github.io)
import spaces
import os
import gradio as gr
from diffusers import DiffusionPipeline
import matplotlib.pyplot as plt
import torch
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16
print(f"Using {device} device, dtype={dtype}")
pipe = DiffusionPipeline.from_pretrained("rhfeiyang/art-free-diffusion-v1",
                                         torch_dtype=dtype).to(device)

from inference import get_lora_network, inference, get_validation_dataloader
lora_map = {
    "None": "None",
    "Andre Derain": "andre-derain_subset1",
    "Vincent van Gogh": "van_gogh_subset1",
    "Andy Warhol": "andy_subset1",
    "Walter Battiss": "walter-battiss_subset2",
    "Camille Corot": "camille-corot_subset1",
    "Claude Monet": "monet_subset2",
    "Pablo Picasso": "picasso_subset1",
    "Jackson Pollock": "jackson-pollock_subset1",
    "Gerhard Richter": "gerhard-richter_subset1",
    "M.C. Escher": "m.c.-escher_subset1",
    "Albert Gleizes": "albert-gleizes_subset1",
    "Hokusai": "katsushika-hokusai_subset1",
    "Wassily Kandinsky": "kandinsky_subset1",
    "Gustav Klimt": "klimt_subset3",
    "Roy Lichtenstein": "roy-lichtenstein_subset1",
    "Henri Matisse": "henri-matisse_subset1",
    "Joan Miro": "joan-miro_subset2",
}
@spaces.GPU
def demo_inference_gen(adapter_choice:str, prompt:str, samples:int=1,seed:int=0, steps=50, guidance_scale=7.5):
    adapter_path = lora_map[adapter_choice]
    if adapter_path not in [None, "None"]:
        adapter_path = f"data/Art_adapters/{adapter_path}/adapter_alpha1.0_rank1_all_up_1000steps.pt"
        style_prompt="sks art"
    else:
        style_prompt=None
    prompts = [prompt]*samples
    infer_loader = get_validation_dataloader(prompts,num_workers=0)
    network = get_lora_network(pipe.unet, adapter_path, weight_dtype=dtype)["network"]

    pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader,
                            height=512, width=512, scales=[1.0],
                            save_dir=None, seed=seed,steps=steps, guidance_scale=guidance_scale,
                            start_noise=-1, show=False, style_prompt=style_prompt, no_load=True,
                            from_scratch=True, device=device, weight_dtype=dtype)[0][1.0]
    return pred_images
@spaces.GPU
def demo_inference_stylization(adapter_path:str, prompts:list, image:list, start_noise=800,seed:int=0):
    infer_loader = get_validation_dataloader(prompts, image,num_workers=0)
    network = get_lora_network(pipe.unet, adapter_path, weight_dtype=dtype)["network"]
    pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader,
                            height=512, width=512, scales=[0.,1.],
                            save_dir=None, seed=seed,steps=20, guidance_scale=7.5,
                            start_noise=start_noise, show=True, style_prompt="sks art", no_load=True,
                            from_scratch=False, device=device, weight_dtype=dtype)[0][1.0]
    return pred_images

# def infer(prompt, samples, steps, scale, seed):
#     generator = torch.Generator(device=device).manual_seed(seed)
#     images_list = pipe(  # type: ignore
#         [prompt] * samples,
#         num_inference_steps=steps,
#         guidance_scale=scale,
#         generator=generator,
#     )
#     images = []
#     safe_image = Image.open(r"data/unsafe.png")
#     print(images_list)
#     for i, image in enumerate(images_list["images"]):  # type: ignore
#         if images_list["nsfw_content_detected"][i]:  # type: ignore
#             images.append(safe_image)
#         else:
#             images.append(image)
#     return images




block = gr.Blocks()
# Direct infer
with block:
    with gr.Group():
        gr.Markdown(" # Art-Free Diffusion Demo")
        gr.Markdown("(More features in development...)")
        with gr.Row():
            text = gr.Textbox(
                label="Enter your prompt",
                max_lines=2,
                placeholder="Enter your prompt",
                container=False,
                value="Park with cherry blossom trees, picnicker’s and a clear blue pond.",
            )



            btn = gr.Button("Run", scale=0)
        gallery = gr.Gallery(
            label="Generated images",
            show_label=False,
            elem_id="gallery",
            columns=[1],
        )

        advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")

        with gr.Row(elem_id="advanced-options"):
            adapter_choice = gr.Dropdown(
                label="Select Art Adapter",
                choices=["None", "Andre Derain","Vincent van Gogh","Andy Warhol", "Walter Battiss",
                         "Camille Corot", "Claude Monet", "Pablo Picasso",
                         "Jackson Pollock", "Gerhard Richter", "M.C. Escher",
                         "Albert Gleizes", "Hokusai", "Wassily Kandinsky", "Gustav Klimt", "Roy Lichtenstein",
                         "Henri Matisse", "Joan Miro"
                         ],
                value="None"
            )
            # print(adapter_choice[0])
            # lora_path = lora_map[adapter_choice.value]
            # if lora_path is not None:
            #     lora_path = f"data/Art_adapters/{lora_path}/adapter_alpha1.0_rank1_all_up_1000steps.pt"

            samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
            steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
            scale = gr.Slider(
                label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
            )
            print(scale)
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=2147483647,
                step=1,
                randomize=True,
            )

        gr.on([text.submit, btn.click], demo_inference_gen, inputs=[adapter_choice, text, samples, seed, steps, scale], outputs=gallery)
        advanced_button.click(
            None,
            [],
            text,
        )



block.launch()