File size: 20,435 Bytes
4c82f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "            <style>\n",
       "                .geemap-dark {\n",
       "                    --jp-widgets-color: white;\n",
       "                    --jp-widgets-label-color: white;\n",
       "                    --jp-ui-font-color1: white;\n",
       "                    --jp-layout-color2: #454545;\n",
       "                    background-color: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-dark .jupyter-button {\n",
       "                    --jp-layout-color3: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-colab {\n",
       "                    background-color: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "\n",
       "                .geemap-colab .jupyter-button {\n",
       "                    --jp-layout-color3: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "            </style>\n",
       "            "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import geemap\n",
    "import ee\n",
    "import plotly.express as px"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "            <style>\n",
       "                .geemap-dark {\n",
       "                    --jp-widgets-color: white;\n",
       "                    --jp-widgets-label-color: white;\n",
       "                    --jp-ui-font-color1: white;\n",
       "                    --jp-layout-color2: #454545;\n",
       "                    background-color: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-dark .jupyter-button {\n",
       "                    --jp-layout-color3: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-colab {\n",
       "                    background-color: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "\n",
       "                .geemap-colab .jupyter-button {\n",
       "                    --jp-layout-color3: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "            </style>\n",
       "            "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "geemap.ee_initialize()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "            <style>\n",
       "                .geemap-dark {\n",
       "                    --jp-widgets-color: white;\n",
       "                    --jp-widgets-label-color: white;\n",
       "                    --jp-ui-font-color1: white;\n",
       "                    --jp-layout-color2: #454545;\n",
       "                    background-color: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-dark .jupyter-button {\n",
       "                    --jp-layout-color3: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-colab {\n",
       "                    background-color: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "\n",
       "                .geemap-colab .jupyter-button {\n",
       "                    --jp-layout-color3: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "            </style>\n",
       "            "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "esa = ee.ImageCollection('ESA/WorldCover/v200').first()\n",
    "\n",
    "ucs = ee.FeatureCollection(\"projects/ee-curso-gee-rhamon/assets/ucs_estaduais_rj\")\n",
    "\n",
    "       \n",
    "esa = esa.clipToCollection(ucs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "            <style>\n",
       "                .geemap-dark {\n",
       "                    --jp-widgets-color: white;\n",
       "                    --jp-widgets-label-color: white;\n",
       "                    --jp-ui-font-color1: white;\n",
       "                    --jp-layout-color2: #454545;\n",
       "                    background-color: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-dark .jupyter-button {\n",
       "                    --jp-layout-color3: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-colab {\n",
       "                    background-color: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "\n",
       "                .geemap-colab .jupyter-button {\n",
       "                    --jp-layout-color3: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "            </style>\n",
       "            "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Computing ... \n",
      "Generating URL ...\n",
      "Downloading data from https://earthengine.googleapis.com/v1/projects/346107197273/tables/60f4e2523a74ad9da945ec21ae745a37-75ffe80c0d13be48ca8789157bb6c245:getFeatures\n",
      "Please wait ...\n",
      "Data downloaded to c:\\Users\\Rhamon\\Desktop\\Solara\\solara-geemap\\notebooks\\esa_stats_ucs_rj.csv\n"
     ]
    }
   ],
   "source": [
    "esa_stats = 'esa_stats_ucs_rj.csv'\n",
    "\n",
    "geemap.zonal_stats_by_group(\n",
    "    esa,\n",
    "    ucs,\n",
    "    esa_stats,\n",
    "    statistics_type='PERCENTAGE',\n",
    "    denominator=1e6,\n",
    "    decimal_places=2,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "<>:1: SyntaxWarning: invalid escape sequence '\\e'\n",
      "<>:1: SyntaxWarning: invalid escape sequence '\\e'\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "            <style>\n",
       "                .geemap-dark {\n",
       "                    --jp-widgets-color: white;\n",
       "                    --jp-widgets-label-color: white;\n",
       "                    --jp-ui-font-color1: white;\n",
       "                    --jp-layout-color2: #454545;\n",
       "                    background-color: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-dark .jupyter-button {\n",
       "                    --jp-layout-color3: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-colab {\n",
       "                    background-color: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "\n",
       "                .geemap-colab .jupyter-button {\n",
       "                    --jp-layout-color3: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "            </style>\n",
       "            "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\Rhamon\\AppData\\Local\\Temp\\ipykernel_21848\\2857369937.py:1: SyntaxWarning: invalid escape sequence '\\e'\n",
      "  df = 'CSVs\\esa_stats_ucs_rj.csv'\n"
     ]
    }
   ],
   "source": [
    "df = 'CSVs\\esa_stats_ucs_rj.csv'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "            <style>\n",
       "                .geemap-dark {\n",
       "                    --jp-widgets-color: white;\n",
       "                    --jp-widgets-label-color: white;\n",
       "                    --jp-ui-font-color1: white;\n",
       "                    --jp-layout-color2: #454545;\n",
       "                    background-color: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-dark .jupyter-button {\n",
       "                    --jp-layout-color3: #383838;\n",
       "                }\n",
       "\n",
       "                .geemap-colab {\n",
       "                    background-color: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "\n",
       "                .geemap-colab .jupyter-button {\n",
       "                    --jp-layout-color3: var(--colab-primary-surface-color, white);\n",
       "                }\n",
       "            </style>\n",
       "            "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "ValueError",
     "evalue": "DataFrame constructor not properly called!",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_21848\\385931256.py\u001b[0m in \u001b[0;36m?\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mfig\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpie\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'Class_10'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"nome\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtitle\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'Cobertura Florestal UCs Estaduais RJ'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      2\u001b[0m \u001b[0mfig\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\Rhamon\\miniconda3\\envs\\geo\\Lib\\site-packages\\plotly\\express\\_chart_types.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(data_frame, names, values, color, facet_row, facet_col, facet_col_wrap, facet_row_spacing, facet_col_spacing, color_discrete_sequence, color_discrete_map, hover_name, hover_data, custom_data, category_orders, labels, title, template, width, height, opacity, hole)\u001b[0m\n\u001b[0;32m   1478\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0mcolor_discrete_sequence\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1479\u001b[0m         \u001b[0mlayout_patch\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;34m\"piecolorway\"\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mcolor_discrete_sequence\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1480\u001b[0m     \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1481\u001b[0m         \u001b[0mlayout_patch\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1482\u001b[1;33m     return make_figure(\n\u001b[0m\u001b[0;32m   1483\u001b[0m         \u001b[0margs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlocals\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1484\u001b[0m         \u001b[0mconstructor\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mgo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mPie\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1485\u001b[0m         \u001b[0mtrace_patch\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mshowlegend\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnames\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhole\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mhole\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\Rhamon\\miniconda3\\envs\\geo\\Lib\\site-packages\\plotly\\express\\_core.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(args, constructor, trace_patch, layout_patch)\u001b[0m\n\u001b[0;32m   2086\u001b[0m     \u001b[0mtrace_patch\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtrace_patch\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2087\u001b[0m     \u001b[0mlayout_patch\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlayout_patch\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2088\u001b[0m     \u001b[0mapply_default_cascade\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2089\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2090\u001b[1;33m     \u001b[0margs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbuild_dataframe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconstructor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   2091\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0mconstructor\u001b[0m \u001b[1;32min\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mgo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTreemap\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mSunburst\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mIcicle\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"path\"\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2092\u001b[0m         \u001b[0margs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mprocess_dataframe_hierarchy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2093\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0mconstructor\u001b[0m \u001b[1;32min\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mgo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mPie\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\Rhamon\\miniconda3\\envs\\geo\\Lib\\site-packages\\plotly\\express\\_core.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(args, constructor)\u001b[0m\n\u001b[0;32m   1344\u001b[0m         \u001b[1;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"data_frame\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"to_pandas_df\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1345\u001b[0m             \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"data_frame\"\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"data_frame\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mto_pandas_df\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1346\u001b[0m             \u001b[0mcolumns\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"data_frame\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1347\u001b[0m         \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1348\u001b[1;33m             \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"data_frame\"\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"data_frame\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1349\u001b[0m             \u001b[0mcolumns\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"data_frame\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1350\u001b[0m     \u001b[1;32melif\u001b[0m \u001b[0mdf_provided\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1351\u001b[0m         \u001b[0mcolumns\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"data_frame\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\Rhamon\\miniconda3\\envs\\geo\\Lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(self, data, index, columns, dtype, copy)\u001b[0m\n\u001b[0;32m    882\u001b[0m                 \u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    883\u001b[0m         \u001b[1;31m# For data is scalar\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    884\u001b[0m         \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    885\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0mindex\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mcolumns\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 886\u001b[1;33m                 \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"DataFrame constructor not properly called!\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    887\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    888\u001b[0m             \u001b[0mindex\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mensure_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    889\u001b[0m             \u001b[0mcolumns\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mensure_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mValueError\u001b[0m: DataFrame constructor not properly called!"
     ]
    }
   ],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "geo",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}