import os from flask import Flask, request import requests from gradio_client import Client import base64 from PIL import Image from io import BytesIO import base64 import os from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from diffusers.utils import load_image import torch import gradio as gr controlnet = ControlNetModel.from_pretrained("rgres/sd-controlnet-aerialdreams", torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16 ) pipe = pipe.to("cuda") # CPU offloading for faster inference times pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() app = Flask(__name__, static_url_path='/static') @app.route('/') def index(): return app.send_static_file('index.html') def save_base64_image(base64Image): image_data = base64.b64decode(base64Image) path = "input_image.jpg" with open(path, 'wb') as f: f.write(image_data) return path def encode_image_to_base64(filepath): with open(filepath, "rb") as image_file: encoded_image = base64.b64encode(image_file.read()).decode("utf-8") return encoded_image def generate_map(image, prompt, steps, seed): #image = Image.open(BytesIO(base64.b64decode(image_base64))) generator = torch.manual_seed(seed) image = pipe( prompt=prompt, num_inference_steps=steps, image=image ).images[0] return image @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() base64Image = data['data'][0] prompt = data['data'][1] steps = data['data'][2] seed = data['data'][3] b64meta, b64_data = base64Image.split(',') image = Image.open(BytesIO(base64.b64decode(b64_data))) return generate_map(image, prompt, steps, seed) if __name__ == '__main__': app.run(host='0.0.0.0', port=int( os.environ.get('D2M_PORT', 8000)), debug=True)