Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,36 @@ import requests
|
|
4 |
from gradio_client import Client
|
5 |
import base64
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
app = Flask(__name__, static_url_path='/static')
|
12 |
|
|
|
13 |
@app.route('/')
|
14 |
def index():
|
15 |
return app.send_static_file('index.html')
|
16 |
|
|
|
17 |
def save_base64_image(base64Image):
|
18 |
image_data = base64.b64decode(base64Image)
|
19 |
path = "input_image.jpg"
|
@@ -21,11 +41,28 @@ def save_base64_image(base64Image):
|
|
21 |
f.write(image_data)
|
22 |
return path
|
23 |
|
|
|
24 |
def encode_image_to_base64(filepath):
|
25 |
with open(filepath, "rb") as image_file:
|
26 |
encoded_image = base64.b64encode(image_file.read()).decode("utf-8")
|
27 |
return encoded_image
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@app.route('/predict', methods=['POST'])
|
30 |
def predict():
|
31 |
global client
|
@@ -40,14 +77,9 @@ def predict():
|
|
40 |
seed = data['data'][3]
|
41 |
|
42 |
b64meta, b64_data = base64Image.split(',')
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
result = client.predict(
|
47 |
-
image_path, prompt, steps, seed, fn_index=0
|
48 |
-
)
|
49 |
-
|
50 |
-
return b64meta + ',' + encode_image_to_base64(result)
|
51 |
|
52 |
|
53 |
if __name__ == '__main__':
|
|
|
4 |
from gradio_client import Client
|
5 |
import base64
|
6 |
|
7 |
+
from PIL import Image
|
8 |
+
from io import BytesIO
|
9 |
+
import base64
|
10 |
+
import os
|
11 |
+
|
12 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
13 |
+
from diffusers.utils import load_image
|
14 |
+
import torch
|
15 |
+
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
controlnet = ControlNetModel.from_pretrained("rgres/sd-controlnet-aerialdreams", torch_dtype=torch.float16)
|
19 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
20 |
+
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16
|
21 |
+
)
|
22 |
|
23 |
+
pipe = pipe.to("cuda")
|
24 |
+
|
25 |
+
# CPU offloading for faster inference times
|
26 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
27 |
+
pipe.enable_model_cpu_offload()
|
28 |
|
29 |
app = Flask(__name__, static_url_path='/static')
|
30 |
|
31 |
+
|
32 |
@app.route('/')
|
33 |
def index():
|
34 |
return app.send_static_file('index.html')
|
35 |
|
36 |
+
|
37 |
def save_base64_image(base64Image):
|
38 |
image_data = base64.b64decode(base64Image)
|
39 |
path = "input_image.jpg"
|
|
|
41 |
f.write(image_data)
|
42 |
return path
|
43 |
|
44 |
+
|
45 |
def encode_image_to_base64(filepath):
|
46 |
with open(filepath, "rb") as image_file:
|
47 |
encoded_image = base64.b64encode(image_file.read()).decode("utf-8")
|
48 |
return encoded_image
|
49 |
|
50 |
+
|
51 |
+
def generate_map(image, prompt, steps, seed):
|
52 |
+
#image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
53 |
+
generator = torch.manual_seed(seed)
|
54 |
+
|
55 |
+
image = Image.fromarray(image)
|
56 |
+
|
57 |
+
image = pipe(
|
58 |
+
prompt=prompt,
|
59 |
+
num_inference_steps=steps,
|
60 |
+
image=image
|
61 |
+
).images[0]
|
62 |
+
|
63 |
+
return image
|
64 |
+
|
65 |
+
|
66 |
@app.route('/predict', methods=['POST'])
|
67 |
def predict():
|
68 |
global client
|
|
|
77 |
seed = data['data'][3]
|
78 |
|
79 |
b64meta, b64_data = base64Image.split(',')
|
80 |
+
image = Image.open(BytesIO(base64.b64decode(b64_data)))
|
81 |
+
|
82 |
+
return (image, prompt, steps, seed)
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
if __name__ == '__main__':
|