rgres commited on
Commit
c695ef1
·
1 Parent(s): efe3a1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -10
app.py CHANGED
@@ -4,16 +4,36 @@ import requests
4
  from gradio_client import Client
5
  import base64
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- base_gradio_url = os.getenv('URL_GRADIO', 'http://localhost:7860')
9
- client = None
 
 
 
10
 
11
  app = Flask(__name__, static_url_path='/static')
12
 
 
13
  @app.route('/')
14
  def index():
15
  return app.send_static_file('index.html')
16
 
 
17
  def save_base64_image(base64Image):
18
  image_data = base64.b64decode(base64Image)
19
  path = "input_image.jpg"
@@ -21,11 +41,28 @@ def save_base64_image(base64Image):
21
  f.write(image_data)
22
  return path
23
 
 
24
  def encode_image_to_base64(filepath):
25
  with open(filepath, "rb") as image_file:
26
  encoded_image = base64.b64encode(image_file.read()).decode("utf-8")
27
  return encoded_image
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  @app.route('/predict', methods=['POST'])
30
  def predict():
31
  global client
@@ -40,14 +77,9 @@ def predict():
40
  seed = data['data'][3]
41
 
42
  b64meta, b64_data = base64Image.split(',')
43
-
44
- image_path = save_base64_image(b64_data)
45
-
46
- result = client.predict(
47
- image_path, prompt, steps, seed, fn_index=0
48
- )
49
-
50
- return b64meta + ',' + encode_image_to_base64(result)
51
 
52
 
53
  if __name__ == '__main__':
 
4
  from gradio_client import Client
5
  import base64
6
 
7
+ from PIL import Image
8
+ from io import BytesIO
9
+ import base64
10
+ import os
11
+
12
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
13
+ from diffusers.utils import load_image
14
+ import torch
15
+
16
+ import gradio as gr
17
+
18
+ controlnet = ControlNetModel.from_pretrained("rgres/sd-controlnet-aerialdreams", torch_dtype=torch.float16)
19
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
20
+ "stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16
21
+ )
22
 
23
+ pipe = pipe.to("cuda")
24
+
25
+ # CPU offloading for faster inference times
26
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
27
+ pipe.enable_model_cpu_offload()
28
 
29
  app = Flask(__name__, static_url_path='/static')
30
 
31
+
32
  @app.route('/')
33
  def index():
34
  return app.send_static_file('index.html')
35
 
36
+
37
  def save_base64_image(base64Image):
38
  image_data = base64.b64decode(base64Image)
39
  path = "input_image.jpg"
 
41
  f.write(image_data)
42
  return path
43
 
44
+
45
  def encode_image_to_base64(filepath):
46
  with open(filepath, "rb") as image_file:
47
  encoded_image = base64.b64encode(image_file.read()).decode("utf-8")
48
  return encoded_image
49
 
50
+
51
+ def generate_map(image, prompt, steps, seed):
52
+ #image = Image.open(BytesIO(base64.b64decode(image_base64)))
53
+ generator = torch.manual_seed(seed)
54
+
55
+ image = Image.fromarray(image)
56
+
57
+ image = pipe(
58
+ prompt=prompt,
59
+ num_inference_steps=steps,
60
+ image=image
61
+ ).images[0]
62
+
63
+ return image
64
+
65
+
66
  @app.route('/predict', methods=['POST'])
67
  def predict():
68
  global client
 
77
  seed = data['data'][3]
78
 
79
  b64meta, b64_data = base64Image.split(',')
80
+ image = Image.open(BytesIO(base64.b64decode(b64_data)))
81
+
82
+ return (image, prompt, steps, seed)
 
 
 
 
 
83
 
84
 
85
  if __name__ == '__main__':