changes
Browse files
app.py
CHANGED
|
@@ -1,7 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
def
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
-
iface.launch()
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# ## Dogs v Cats
|
| 5 |
+
|
| 6 |
+
# In[32]:
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
#/default_exp app
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# In[1]:
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
get_ipython().system('pip install gradio')
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# In[2]:
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
#/export
|
| 22 |
+
from fastai.vision.all import *
|
| 23 |
import gradio as gr
|
| 24 |
|
| 25 |
+
def is_cat(x): return x[0].isupper()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# In[3]:
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
im = PILImage.create('dog.jpg')
|
| 32 |
+
im.thumbnail((192,192))
|
| 33 |
+
im
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# In[5]:
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
#/export
|
| 40 |
+
learn = load_learner('model.pkl')
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# In[6]:
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
learn.predict(im)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# In[7]:
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
#/export
|
| 53 |
+
categories = ('Dog', 'Cat')
|
| 54 |
+
|
| 55 |
+
def classify_image(img):
|
| 56 |
+
pred,idx,probs = learn.predict(img)
|
| 57 |
+
return dict(zip(categories, map(float,probs)))
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# In[8]:
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
classify_image(im)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# In[10]:
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
#/export
|
| 70 |
+
image = gr.inputs.Image(shape=(192,192))
|
| 71 |
+
label = gr.outputs.Label()
|
| 72 |
+
examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
|
| 73 |
+
|
| 74 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
| 75 |
+
intf.launch(inline=False)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# In[11]:
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
m = learn.model
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# In[12]:
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
ps = list(m.parameters())
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# In[13]:
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
ps[1]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# # Exporting
|
| 97 |
+
|
| 98 |
+
# In[15]:
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
get_ipython().system('pip install nbdev')
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# In[ ]:
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# In[34]:
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
import nbdev
|
| 114 |
+
#nbdev.export.nb_export('Dogs v Cats.ipynb', 'app')
|
| 115 |
+
nbdev.export.nb_export('Dogs v Cats.ipynb', './')
|
| 116 |
+
print('Export successful')
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# In[ ]:
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
|
|
|
|
|
|