from transformers import T5Tokenizer, T5ForConditionalGeneration model_source = "rfahlevih/t5-small-finetuned-resume-text-generation" tokenizer = T5Tokenizer.from_pretrained(model_source) model = T5ForConditionalGeneration.from_pretrained(model_source) def generate_text(input_text): input_ids = tokenizer(input_text, return_tensors='pt', truncation=True, padding="max_length", max_length=512).input_ids outputs = model.generate(input_ids, max_length=512, num_beams=4, early_stopping=True) return tokenizer.decode(outputs[0], skip_special_tokens=True)