Spaces:
Sleeping
Sleeping
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
model_source = "rfahlevih/t5-small-finetuned-resume-text-generation" | |
tokenizer = T5Tokenizer.from_pretrained(model_source) | |
model = T5ForConditionalGeneration.from_pretrained(model_source) | |
def generate_text(input_text): | |
input_ids = tokenizer(input_text, return_tensors='pt', truncation=True, padding="max_length", max_length=512).input_ids | |
outputs = model.generate(input_ids, max_length=512, num_beams=4, early_stopping=True) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |