cvsummarizationsbertandt5 / text_generator.py
rfahlevih's picture
Initial Commit
5581268 verified
raw
history blame contribute delete
576 Bytes
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_source = "rfahlevih/t5-small-finetuned-resume-text-generation"
tokenizer = T5Tokenizer.from_pretrained(model_source)
model = T5ForConditionalGeneration.from_pretrained(model_source)
def generate_text(input_text):
input_ids = tokenizer(input_text, return_tensors='pt', truncation=True, padding="max_length", max_length=512).input_ids
outputs = model.generate(input_ids, max_length=512, num_beams=4, early_stopping=True)
return tokenizer.decode(outputs[0], skip_special_tokens=True)