File size: 5,964 Bytes
5581268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer

def load_model(model_path, head_path):
    try:
        model = SentenceTransformer(model_path)
        classification_head = nn.Linear(model.get_sentence_embedding_dimension(), 5)
        classification_head.load_state_dict(torch.load(head_path, map_location=torch.device('cpu')))
        
        tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
        device = torch.device('cpu')
        
        model.to(device)
        classification_head.to(device)

        return model, classification_head, tokenizer, device
    except Exception as e:
        print(f"Error loading model: {e}")
        raise

def predict_spans(full_text, model, classification_head, tokenizer, device,

                 window_size=384, stride=256, min_span_length=3):
    class_thresholds = {
        0: 0.8,
        1: 0.7,
        2: 0.75,
        3: 0.7,
        4: 0.8
    }

    label_map = {
        0: 'personal_information',
        1: 'skills',
        2: 'education',
        3: 'experience',
        4: 'certification'
    }

    results = []
    full_text = full_text.strip()

    for i in range(0, len(full_text), stride):
        window_text = full_text[i:i+window_size]

        encoding = tokenizer(
            window_text,
            max_length=window_size,
            padding='max_length',
            truncation=True,
            return_offsets_mapping=True,
            return_tensors='pt'
        ).to(device)

        with torch.no_grad():
            model_output = model({
                'input_ids': encoding['input_ids'],
                'attention_mask': encoding['attention_mask']
            })
            token_embeddings = model_output['token_embeddings']
            token_logits = classification_head(token_embeddings)
            token_probs = torch.softmax(token_logits, dim=2)

        offset_mapping = encoding['offset_mapping'][0].cpu().numpy()
        current_span = None

        for token_idx, (start, end) in enumerate(offset_mapping):
            if start == end == 0:
                continue

            probs = token_probs[0, token_idx]
            max_prob, pred_label = torch.max(probs, dim=0)
            max_prob = max_prob.item()
            pred_label = pred_label.item()

            if max_prob > class_thresholds[pred_label]:
                token_text = window_text[start:end]

                if token_text.startswith('##'):
                    if current_span and current_span['label'] == label_map[pred_label]:
                        current_span['text'] += token_text[2:]
                        current_span['position'] = (current_span['position'][0], i+end)
                        current_span['confidence'] = max(current_span['confidence'], max_prob)
                        continue

                if (current_span and
                    current_span['label'] == label_map[pred_label] and
                    (i+start - current_span['position'][1]) <= 2):

                    current_span['text'] += ' ' + token_text
                    current_span['position'] = (current_span['position'][0], i+end)
                    current_span['confidence'] = max(current_span['confidence'], max_prob)
                else:
                    if current_span:
                        results.append(current_span)
                    current_span = {
                        'text': token_text,
                        'label': label_map[pred_label],
                        'confidence': max_prob,
                        'position': (i+start, i+end)
                    }
            else:
                if current_span:
                    results.append(current_span)
                    current_span = None

        if current_span:
            results.append(current_span)

    filtered_results = []
    for span in results:
        clean_text = span['text'].strip()
        if len(clean_text.split()) >= min_span_length or span['confidence'] > 0.9:
            span['text'] = clean_text
            filtered_results.append(span)

    merged_results = []
    filtered_results.sort(key=lambda x: x['position'][0])

    for span in filtered_results:
        if not merged_results:
            merged_results.append(span)
        else:
            last = merged_results[-1]
            if (span['label'] == last['label'] and
                span['position'][0] <= last['position'][1] + 5):

                merged_text = last['text'] + ' ' + span['text']
                merged_results[-1] = {
                    'text': merged_text,
                    'label': span['label'],
                    'confidence': max(last['confidence'], span['confidence']),
                    'position': (last['position'][0], span['position'][1])
                }
            else:
                merged_results.append(span)

    for span in merged_results:
        tokens = span['text'].split()
        if len(tokens) > 15:
            span['text'] = ' '.join(tokens[:15])
            
    return merged_results

def format_results(spans):
    formatted = {}
    for span in spans:
        label = span['label']
        if label not in formatted:
            formatted[label] = []
        formatted[label].append(span)

    for label in formatted:
        formatted[label].sort(key=lambda x: x['confidence'], reverse=True)

    return formatted

def format_final_output(formatted_results):
    final_output = []
    for label, items in formatted_results.items():
        top_n = 1 if label == 'personal_information' else 3
        label_upper = label.upper()
        for item in items[:top_n]:
            final_output.append(f"{label_upper}: {item['text']}")
    return " ".join(final_output)