# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import requests from .modules.assistant import Assistant from .modules.dataset import DataSet from .modules.document import Document from .modules.chunk import Chunk class RAGFlow: def __init__(self, user_key, base_url, version='v1'): """ api_url: http:///api/v1 """ self.user_key = user_key self.api_url = f"{base_url}/api/{version}" self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)} def post(self, path, param, stream=False): res = requests.post(url=self.api_url + path, json=param, headers=self.authorization_header, stream=stream) return res def get(self, path, params=None): res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header) return res def delete(self, path, params): res = requests.delete(url=self.api_url + path, params=params, headers=self.authorization_header) return res def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English", permission: str = "me", document_count: int = 0, chunk_count: int = 0, parse_method: str = "naive", parser_config: DataSet.ParserConfig = None) -> DataSet: if parser_config is None: parser_config = DataSet.ParserConfig(self, {"chunk_token_count": 128, "layout_recognize": True, "delimiter": "\n!?。;!?", "task_page_size": 12}) parser_config = parser_config.to_json() res = self.post("/dataset/save", {"name": name, "avatar": avatar, "description": description, "language": language, "permission": permission, "document_count": document_count, "chunk_count": chunk_count, "parse_method": parse_method, "parser_config": parser_config } ) res = res.json() if res.get("retmsg") == "success": return DataSet(self, res["data"]) raise Exception(res["retmsg"]) def list_datasets(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True) -> \ List[DataSet]: res = self.get("/dataset/list", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc}) res = res.json() result_list = [] if res.get("retmsg") == "success": for data in res['data']: result_list.append(DataSet(self, data)) return result_list raise Exception(res["retmsg"]) def get_dataset(self, id: str = None, name: str = None) -> DataSet: res = self.get("/dataset/detail", {"id": id, "name": name}) res = res.json() if res.get("retmsg") == "success": return DataSet(self, res['data']) raise Exception(res["retmsg"]) def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [], llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant: datasets = [] for dataset in knowledgebases: datasets.append(dataset.to_json()) if llm is None: llm = Assistant.LLM(self, {"model_name": None, "temperature": 0.1, "top_p": 0.3, "presence_penalty": 0.4, "frequency_penalty": 0.7, "max_tokens": 512, }) if prompt is None: prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2, "keywords_similarity_weight": 0.7, "top_n": 8, "variables": [{ "key": "knowledge", "optional": True }], "rerank_model": "", "empty_response": None, "opener": None, "show_quote": True, "prompt": None}) if prompt.opener is None: prompt.opener = "Hi! I'm your assistant, what can I do for you?" if prompt.prompt is None: prompt.prompt = ( "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. " "Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, " "your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' " "Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base." ) temp_dict = {"name": name, "avatar": avatar, "knowledgebases": datasets, "llm": llm.to_json(), "prompt": prompt.to_json()} res = self.post("/assistant/save", temp_dict) res = res.json() if res.get("retmsg") == "success": return Assistant(self, res["data"]) raise Exception(res["retmsg"]) def get_assistant(self, id: str = None, name: str = None) -> Assistant: res = self.get("/assistant/get", {"id": id, "name": name}) res = res.json() if res.get("retmsg") == "success": return Assistant(self, res['data']) raise Exception(res["retmsg"]) def list_assistants(self) -> List[Assistant]: res = self.get("/assistant/list") res = res.json() result_list = [] if res.get("retmsg") == "success": for data in res['data']: result_list.append(Assistant(self, data)) return result_list raise Exception(res["retmsg"]) def create_document(self, ds: DataSet, name: str, blob: bytes) -> bool: url = f"/doc/dataset/{ds.id}/documents/upload" files = { 'file': (name, blob) } headers = { 'Authorization': f"Bearer {ds.rag.user_key}" } response = requests.post(self.api_url + url, files=files, headers=headers) if response.status_code == 200 and response.json().get('retmsg') == 'success': return True else: raise Exception(f"Upload failed: {response.json().get('retmsg')}") return False def get_document(self, id: str = None, name: str = None) -> Document: res = self.get("/doc/infos", {"id": id, "name": name}) res = res.json() if res.get("retmsg") == "success": return Document(self, res['data']) raise Exception(res["retmsg"]) def async_parse_documents(self, doc_ids): """ Asynchronously start parsing multiple documents without waiting for completion. :param doc_ids: A list containing multiple document IDs. """ try: if not doc_ids or not isinstance(doc_ids, list): raise ValueError("doc_ids must be a non-empty list of document IDs") data = {"document_ids": doc_ids, "run": 1} res = self.post(f'/doc/run', data) if res.status_code != 200: raise Exception(f"Failed to start async parsing for documents: {res.text}") print(f"Async parsing started successfully for documents: {doc_ids}") except Exception as e: print(f"Error occurred during async parsing for documents: {str(e)}") raise def async_cancel_parse_documents(self, doc_ids): """ Cancel the asynchronous parsing of multiple documents. :param doc_ids: A list containing multiple document IDs. """ try: if not doc_ids or not isinstance(doc_ids, list): raise ValueError("doc_ids must be a non-empty list of document IDs") data = {"document_ids": doc_ids, "run": 2} res = self.post(f'/doc/run', data) if res.status_code != 200: raise Exception(f"Failed to cancel async parsing for documents: {res.text}") print(f"Async parsing canceled successfully for documents: {doc_ids}") except Exception as e: print(f"Error occurred during canceling parsing for documents: {str(e)}") raise def retrieval(self, question, datasets=None, documents=None, offset=0, limit=6, similarity_threshold=0.1, vector_similarity_weight=0.3, top_k=1024): """ Perform document retrieval based on the given parameters. :param question: The query question. :param datasets: A list of datasets (optional, as documents may be provided directly). :param documents: A list of documents (if specific documents are provided). :param offset: Offset for the retrieval results. :param limit: Maximum number of retrieval results. :param similarity_threshold: Similarity threshold. :param vector_similarity_weight: Weight of vector similarity. :param top_k: Number of top most similar documents to consider (for pre-filtering or ranking). Note: This is a hypothetical implementation and may need adjustments based on the actual backend service API. """ try: data = { "question": question, "datasets": datasets if datasets is not None else [], "documents": [doc.id if hasattr(doc, 'id') else doc for doc in documents] if documents is not None else [], "offset": offset, "limit": limit, "similarity_threshold": similarity_threshold, "vector_similarity_weight": vector_similarity_weight, "top_k": top_k, "knowledgebase_id": datasets, } # Send a POST request to the backend service (using requests library as an example, actual implementation may vary) res = self.post(f'/doc/retrieval_test', data) # Check the response status code if res.status_code == 200: res_data = res.json() if res_data.get("retmsg") == "success": chunks = [] for chunk_data in res_data["data"].get("chunks", []): chunk = Chunk(self, chunk_data) chunks.append(chunk) return chunks else: raise Exception(f"Error fetching chunks: {res_data.get('retmsg')}") else: raise Exception(f"API request failed with status code {res.status_code}") except Exception as e: print(f"An error occurred during retrieval: {e}") raise