# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import requests from .modules.chat_assistant import Assistant from .modules.dataset import DataSet class RAGFlow: def __init__(self, user_key, base_url, version='v1'): """ api_url: http:///api/v1 """ self.user_key = user_key self.api_url = f"{base_url}/api/{version}" self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)} def post(self, path, param): res = requests.post(url=self.api_url + path, json=param, headers=self.authorization_header) return res def get(self, path, params=None): res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header) return res def delete(self, path, params): res = requests.delete(url=self.api_url + path, params=params, headers=self.authorization_header) return res def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English", permission: str = "me", document_count: int = 0, chunk_count: int = 0, parse_method: str = "naive", parser_config: DataSet.ParserConfig = None) -> DataSet: if parser_config is None: parser_config = DataSet.ParserConfig(self, {"chunk_token_count": 128, "layout_recognize": True, "delimiter": "\n!?。;!?", "task_page_size": 12}) parser_config = parser_config.to_json() res = self.post("/dataset/save", {"name": name, "avatar": avatar, "description": description, "language": language, "permission": permission, "document_count": document_count, "chunk_count": chunk_count, "parse_method": parse_method, "parser_config": parser_config } ) res = res.json() if res.get("retmsg") == "success": return DataSet(self, res["data"]) raise Exception(res["retmsg"]) def list_datasets(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True) -> \ List[DataSet]: res = self.get("/dataset/list", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc}) res = res.json() result_list = [] if res.get("retmsg") == "success": for data in res['data']: result_list.append(DataSet(self, data)) return result_list raise Exception(res["retmsg"]) def get_dataset(self, id: str = None, name: str = None) -> DataSet: res = self.get("/dataset/detail", {"id": id, "name": name}) res = res.json() if res.get("retmsg") == "success": return DataSet(self, res['data']) raise Exception(res["retmsg"]) def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [], llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant: datasets = [] for dataset in knowledgebases: datasets.append(dataset.to_json()) if llm is None: llm = Assistant.LLM(self, {"model_name": None, "temperature": 0.1, "top_p": 0.3, "presence_penalty": 0.4, "frequency_penalty": 0.7, "max_tokens": 512, }) if prompt is None: prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2, "keywords_similarity_weight": 0.7, "top_n": 8, "variables": [{ "key": "knowledge", "optional": True }], "rerank_model": "", "empty_response": None, "opener": None, "show_quote": True, "prompt": None}) if prompt.opener is None: prompt.opener = "Hi! I'm your assistant, what can I do for you?" if prompt.prompt is None: prompt.prompt = ( "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. " "Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, " "your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' " "Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base." ) temp_dict = {"name": name, "avatar": avatar, "knowledgebases": datasets, "llm": llm.to_json(), "prompt": prompt.to_json()} res = self.post("/assistant/save", temp_dict) res = res.json() if res.get("retmsg") == "success": return Assistant(self, res["data"]) raise Exception(res["retmsg"]) def get_assistant(self, id: str = None, name: str = None) -> Assistant: res = self.get("/assistant/get", {"id": id, "name": name}) res = res.json() if res.get("retmsg") == "success": return Assistant(self, res['data']) raise Exception(res["retmsg"]) def list_assistants(self) -> List[Assistant]: res = self.get("/assistant/list") res = res.json() result_list = [] if res.get("retmsg") == "success": for data in res['data']: result_list.append(Assistant(self, data)) return result_list raise Exception(res["retmsg"])