# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import onnxruntime as ort from huggingface_hub import snapshot_download from .operators import * from rag.settings import cron_logger class Recognizer(object): def __init__(self, label_list, task_name, model_dir=None): """ If you have trouble downloading HuggingFace models, -_^ this might help!! For Linux: export HF_ENDPOINT=https://hf-mirror.com For Windows: Good luck ^_- """ if not model_dir: model_dir = snapshot_download(repo_id="InfiniFlow/ocr") model_file_path = os.path.join(model_dir, task_name + ".onnx") if not os.path.exists(model_file_path): raise ValueError("not find model file path {}".format( model_file_path)) if ort.get_device() == "GPU": self.ort_sess = ort.InferenceSession(model_file_path, providers=['CUDAExecutionProvider']) else: self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider']) self.label_list = label_list def create_inputs(self, imgs, im_info): """generate input for different model type Args: imgs (list(numpy)): list of images (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model """ inputs = {} im_shape = [] scale_factor = [] if len(imgs) == 1: inputs['image'] = np.array((imgs[0],)).astype('float32') inputs['im_shape'] = np.array( (im_info[0]['im_shape'],)).astype('float32') inputs['scale_factor'] = np.array( (im_info[0]['scale_factor'],)).astype('float32') return inputs for e in im_info: im_shape.append(np.array((e['im_shape'],)).astype('float32')) scale_factor.append(np.array((e['scale_factor'],)).astype('float32')) inputs['im_shape'] = np.concatenate(im_shape, axis=0) inputs['scale_factor'] = np.concatenate(scale_factor, axis=0) imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs] max_shape_h = max([e[0] for e in imgs_shape]) max_shape_w = max([e[1] for e in imgs_shape]) padding_imgs = [] for img in imgs: im_c, im_h, im_w = img.shape[:] padding_im = np.zeros( (im_c, max_shape_h, max_shape_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = img padding_imgs.append(padding_im) inputs['image'] = np.stack(padding_imgs, axis=0) return inputs def preprocess(self, image_list): preprocess_ops = [] for op_info in [ {'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'}, {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'}, {'type': 'Permute'}, {'stride': 32, 'type': 'PadStride'} ]: new_op_info = op_info.copy() op_type = new_op_info.pop('type') preprocess_ops.append(eval(op_type)(**new_op_info)) inputs = [] for im_path in image_list: im, im_info = preprocess(im_path, preprocess_ops) inputs.append({"image": np.array((im,)).astype('float32'), "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')}) return inputs def __call__(self, image_list, thr=0.7, batch_size=16): res = [] imgs = [] for i in range(len(image_list)): if not isinstance(image_list[i], np.ndarray): imgs.append(np.array(image_list[i])) else: imgs.append(image_list[i]) batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size) for i in range(batch_loop_cnt): start_index = i * batch_size end_index = min((i + 1) * batch_size, len(imgs)) batch_image_list = imgs[start_index:end_index] inputs = self.preprocess(batch_image_list) for ins in inputs: bb = [] for b in self.ort_sess.run(None, ins)[0]: clsid, bbox, score = int(b[0]), b[2:], b[1] if score < thr: continue if clsid >= len(self.label_list): cron_logger.warning(f"bad category id") continue bb.append({ "type": self.label_list[clsid].lower(), "bbox": [float(t) for t in bbox.tolist()], "score": float(score) }) res.append(bb) #seeit.save_results(image_list, res, self.label_list, threshold=thr) return res