|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import hashlib
|
|
import re
|
|
|
|
import numpy as np
|
|
from flask import request
|
|
from flask_login import login_required, current_user
|
|
|
|
from rag.nlp import search, huqie
|
|
from rag.utils import ELASTICSEARCH, rmSpace
|
|
from api.db import LLMType
|
|
from api.db.services import duplicate_name
|
|
from api.db.services.kb_service import KnowledgebaseService
|
|
from api.db.services.llm_service import TenantLLMService
|
|
from api.db.services.user_service import UserTenantService
|
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
|
from api.db.services.document_service import DocumentService
|
|
from api.settings import RetCode
|
|
from api.utils.api_utils import get_json_result
|
|
|
|
retrival = search.Dealer(ELASTICSEARCH)
|
|
|
|
@manager.route('/list', methods=['POST'])
|
|
@login_required
|
|
@validate_request("doc_id")
|
|
def list():
|
|
req = request.json
|
|
doc_id = req["doc_id"]
|
|
page = int(req.get("page", 1))
|
|
size = int(req.get("size", 30))
|
|
question = req.get("keywords", "")
|
|
try:
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
|
|
query = {
|
|
"doc_ids": [doc_id], "page": page, "size": size, "question": question
|
|
}
|
|
if "available_int" in req: query["available_int"] = int(req["available_int"])
|
|
sres = retrival.search(query, search.index_name(tenant_id))
|
|
res = {"total": sres.total, "chunks": []}
|
|
for id in sres.ids:
|
|
d = {
|
|
"chunk_id": id,
|
|
"content_ltks": rmSpace(sres.highlight[id]) if question else sres.field[id]["content_ltks"],
|
|
"doc_id": sres.field[id]["doc_id"],
|
|
"docnm_kwd": sres.field[id]["docnm_kwd"],
|
|
"important_kwd": sres.field[id].get("important_kwd", []),
|
|
"img_id": sres.field[id].get("img_id", ""),
|
|
"available_int": sres.field[id].get("available_int", 1),
|
|
}
|
|
res["chunks"].append(d)
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
if str(e).find("not_found") > 0:
|
|
return get_json_result(data=False, retmsg=f'Index not found!',
|
|
retcode=RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/get', methods=['GET'])
|
|
@login_required
|
|
def get():
|
|
chunk_id = request.args["chunk_id"]
|
|
try:
|
|
tenants = UserTenantService.query(user_id=current_user.id)
|
|
if not tenants:
|
|
return get_data_error_result(retmsg="Tenant not found!")
|
|
res = ELASTICSEARCH.get(chunk_id, search.index_name(tenants[0].tenant_id))
|
|
if not res.get("found"):return server_error_response("Chunk not found")
|
|
id = res["_id"]
|
|
res = res["_source"]
|
|
res["chunk_id"] = id
|
|
k = []
|
|
for n in res.keys():
|
|
if re.search(r"(_vec$|_sm_)", n):
|
|
k.append(n)
|
|
if re.search(r"(_tks|_ltks)", n):
|
|
res[n] = rmSpace(res[n])
|
|
for n in k: del res[n]
|
|
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
if str(e).find("NotFoundError") >= 0:
|
|
return get_json_result(data=False, retmsg=f'Chunk not found!',
|
|
retcode=RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/set', methods=['POST'])
|
|
@login_required
|
|
@validate_request("doc_id", "chunk_id", "content_ltks", "important_kwd", "docnm_kwd")
|
|
def set():
|
|
req = request.json
|
|
d = {"id": req["chunk_id"]}
|
|
d["content_ltks"] = huqie.qie(req["content_ltks"])
|
|
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
|
d["important_kwd"] = req["important_kwd"]
|
|
d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
|
|
if "available_int" in req: d["available_int"] = req["available_int"]
|
|
|
|
try:
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
|
|
embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
|
|
v, c = embd_mdl.encode([req["docnm_kwd"], req["content_ltks"]])
|
|
v = 0.1 * v[0] + 0.9 * v[1]
|
|
d["q_%d_vec"%len(v)] = v.tolist()
|
|
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/switch', methods=['POST'])
|
|
@login_required
|
|
@validate_request("chunk_ids", "available_int", "doc_id")
|
|
def switch():
|
|
req = request.json
|
|
try:
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
|
|
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
|
|
search.index_name(tenant_id)):
|
|
return get_data_error_result(retmsg="Index updating failure")
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
|
|
@manager.route('/create', methods=['POST'])
|
|
@login_required
|
|
@validate_request("doc_id", "content_ltks", "important_kwd")
|
|
def create():
|
|
req = request.json
|
|
md5 = hashlib.md5()
|
|
md5.update((req["content_ltks"] + req["doc_id"]).encode("utf-8"))
|
|
chunck_id = md5.hexdigest()
|
|
d = {"id": chunck_id, "content_ltks": huqie.qie(req["content_ltks"])}
|
|
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
|
d["important_kwd"] = req["important_kwd"]
|
|
d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
|
|
|
|
try:
|
|
e, doc = DocumentService.get_by_id(req["doc_id"])
|
|
if not e: return get_data_error_result(retmsg="Document not found!")
|
|
d["kb_id"] = [doc.kb_id]
|
|
d["docnm_kwd"] = doc.name
|
|
d["doc_id"] = doc.id
|
|
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
|
|
|
|
embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
|
|
v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
|
|
DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
|
|
v = 0.1 * v[0] + 0.9 * v[1]
|
|
d["q_%d_vec"%len(v)] = v.tolist()
|
|
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
|
return get_json_result(data={"chunk_id": chunck_id})
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/retrieval_test', methods=['POST'])
|
|
@login_required
|
|
@validate_request("kb_id", "question")
|
|
def retrieval_test():
|
|
req = request.json
|
|
page = int(req.get("page", 1))
|
|
size = int(req.get("size", 30))
|
|
question = req["question"]
|
|
kb_id = req["kb_id"]
|
|
doc_ids = req.get("doc_ids", [])
|
|
similarity_threshold = float(req.get("similarity_threshold", 0.4))
|
|
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
|
top = int(req.get("top", 1024))
|
|
try:
|
|
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
|
if not e:
|
|
return get_data_error_result(retmsg="Knowledgebase not found!")
|
|
|
|
embd_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.EMBEDDING.value)
|
|
sres = retrival.search({"kb_ids": [kb_id], "doc_ids": doc_ids, "size": top,
|
|
"question": question, "vector": True,
|
|
"similarity": similarity_threshold},
|
|
search.index_name(kb.tenant_id),
|
|
embd_mdl)
|
|
|
|
sim, tsim, vsim = retrival.rerank(sres, question, 1-vector_similarity_weight, vector_similarity_weight)
|
|
idx = np.argsort(sim*-1)
|
|
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
|
start_idx = (page-1)*size
|
|
for i in idx:
|
|
ranks["total"] += 1
|
|
if sim[i] < similarity_threshold: break
|
|
start_idx -= 1
|
|
if start_idx >= 0:continue
|
|
if len(ranks["chunks"]) == size:continue
|
|
id = sres.ids[i]
|
|
dnm = sres.field[id]["docnm_kwd"]
|
|
d = {
|
|
"chunk_id": id,
|
|
"content_ltks": sres.field[id]["content_ltks"],
|
|
"doc_id": sres.field[id]["doc_id"],
|
|
"docnm_kwd": dnm,
|
|
"kb_id": sres.field[id]["kb_id"],
|
|
"important_kwd": sres.field[id].get("important_kwd", []),
|
|
"img_id": sres.field[id].get("img_id", ""),
|
|
"similarity": sim[i],
|
|
"vector_similarity": vsim[i],
|
|
"term_similarity": tsim[i]
|
|
}
|
|
ranks["chunks"].append(d)
|
|
if dnm not in ranks["doc_aggs"]:ranks["doc_aggs"][dnm] = 0
|
|
ranks["doc_aggs"][dnm] += 1
|
|
|
|
return get_json_result(data=ranks)
|
|
except Exception as e:
|
|
if str(e).find("not_found") > 0:
|
|
return get_json_result(data=False, retmsg=f'Index not found!',
|
|
retcode=RetCode.DATA_ERROR)
|
|
return server_error_response(e) |