ragflow / rag /app /table.py
KevinHuSh
Add resume parser and fix bugs (#59)
c5ea37c
raw
history blame
6.66 kB
import copy
import re
from io import BytesIO
from xpinyin import Pinyin
import numpy as np
import pandas as pd
from openpyxl import load_workbook
from dateutil.parser import parse as datetime_parse
from api.db.services.knowledgebase_service import KnowledgebaseService
from rag.parser import is_english, tokenize
from rag.nlp import huqie, stemmer
class Excel(object):
def __call__(self, fnm, binary=None, callback=None):
if not binary:
wb = load_workbook(fnm)
else:
wb = load_workbook(BytesIO(binary))
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails, done = [], [], 0
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
headers = [cell.value for cell in rows[0]]
missed = set([i for i, h in enumerate(headers) if h is None])
headers = [cell.value for i, cell in enumerate(rows[0]) if i not in missed]
data = []
for i, r in enumerate(rows[1:]):
row = [cell.value for ii, cell in enumerate(r) if ii not in missed]
if len(row) != len(headers):
fails.append(str(i))
continue
data.append(row)
done += 1
if done % 999 == 0:
callback(done * 0.6 / total, ("Extract records: {}".format(len(res)) + (
f"{len(fails)} failure({sheetname}), line: %s..." % (",".join(fails[:3])) if fails else "")))
res.append(pd.DataFrame(np.array(data), columns=headers))
callback(0.6, ("Extract records: {}. ".format(done) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
def trans_datatime(s):
try:
return datetime_parse(s.strip()).strftime("%Y-%m-%dT%H:%M:%S")
except Exception as e:
pass
def trans_bool(s):
if re.match(r"(true|yes|是)$", str(s).strip(), flags=re.IGNORECASE): return ["yes", "是"]
if re.match(r"(false|no|否)$", str(s).strip(), flags=re.IGNORECASE): return ["no", "否"]
def column_data_type(arr):
uni = len(set([a for a in arr if a is not None]))
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
trans = {t: f for f, t in
[(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
for a in arr:
if a is None: continue
if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
counts["int"] += 1
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
counts["float"] += 1
elif re.match(r"(true|false|yes|no|是|否)$", str(a), flags=re.IGNORECASE):
counts["bool"] += 1
elif trans_datatime(str(a)):
counts["datetime"] += 1
else:
counts["text"] += 1
counts = sorted(counts.items(), key=lambda x: x[1] * -1)
ty = counts[0][0]
for i in range(len(arr)):
if arr[i] is None: continue
try:
arr[i] = trans[ty](str(arr[i]))
except Exception as e:
arr[i] = None
if ty == "text":
if len(arr) > 128 and uni / len(arr) < 0.1:
ty = "keyword"
return arr, ty
def chunk(filename, binary=None, callback=None, **kwargs):
dfs = []
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = Excel()
dfs = excel_parser(filename, binary, callback)
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:
txt = binary.decode("utf-8")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l: break
txt += l
lines = txt.split("\n")
fails = []
headers = lines[0].split(kwargs.get("delimiter", "\t"))
rows = []
for i, line in enumerate(lines[1:]):
row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
if len(row) != len(headers):
fails.append(str(i))
continue
rows.append(row)
if len(rows) % 999 == 0:
callback(len(rows) * 0.6 / len(lines), ("Extract records: {}".format(len(rows)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
callback(0.6, ("Extract records: {}".format(len(rows)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
else:
raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
res = []
PY = Pinyin()
fieds_map = {"text": "_tks", "int": "_int", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
for df in dfs:
for n in ["id", "_id", "index", "idx"]:
if n in df.columns: del df[n]
clmns = df.columns.values
txts = list(copy.deepcopy(clmns))
py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
clmn_tys = []
for j in range(len(clmns)):
cln, ty = column_data_type(df[clmns[j]])
clmn_tys.append(ty)
df[clmns[j]] = cln
if ty == "text": txts.extend([str(c) for c in cln if c])
clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j]) for i in range(len(clmns))]
eng = is_english(txts)
for ii, row in df.iterrows():
d = {}
row_txt = []
for j in range(len(clmns)):
if row[clmns[j]] is None: continue
fld = clmns_map[j][0]
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(row[clmns[j]])
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
if not row_txt: continue
tokenize(d, "; ".join(row_txt), eng)
res.append(d)
KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
callback(0.6, "")
return res
if __name__ == "__main__":
import sys
def dummy(a, b):
pass
chunk(sys.argv[1], callback=dummy)