|
import copy
|
|
import re
|
|
|
|
from api.db import ParserType
|
|
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
|
|
from deepdoc.parser import PdfParser
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
|
|
class Pdf(PdfParser):
|
|
def __init__(self):
|
|
self.model_speciess = ParserType.MANUAL.value
|
|
super().__init__()
|
|
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
from timeit import default_timer as timer
|
|
start = timer()
|
|
callback(msg="OCR is running...")
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page,
|
|
callback
|
|
)
|
|
callback(msg="OCR finished.")
|
|
|
|
|
|
|
|
print("OCR:", timer()-start)
|
|
|
|
def tag(pn, left, right, top, bottom):
|
|
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
|
.format(pn, left, right, top, bottom)
|
|
|
|
self._layouts_rec(zoomin)
|
|
callback(0.65, "Layout analysis finished.")
|
|
print("paddle layouts:", timer() - start)
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.67, "Table analysis finished.")
|
|
self._text_merge()
|
|
tbls = self._extract_table_figure(True, zoomin, True, True)
|
|
self._concat_downward()
|
|
self._filter_forpages()
|
|
callback(0.68, "Text merging finished")
|
|
|
|
|
|
for b in self.boxes:
|
|
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
|
|
|
|
|
|
|
bull = bullets_category([b["text"] for b in self.boxes])
|
|
most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
|
|
assert len(self.boxes) == len(levels)
|
|
sec_ids = []
|
|
sid = 0
|
|
for i, lvl in enumerate(levels):
|
|
if lvl <= most_level: sid += 1
|
|
sec_ids.append(sid)
|
|
|
|
|
|
sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
|
for (img, rows), poss in tbls:
|
|
sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0]+1-from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
|
|
|
chunks = []
|
|
last_sid = -2
|
|
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
|
poss = "\t".join([tag(*pos) for pos in poss])
|
|
if sec_id == last_sid or sec_id == -1:
|
|
if chunks:
|
|
chunks[-1] += "\n" + txt + poss
|
|
continue
|
|
chunks.append(txt + poss)
|
|
if sec_id >-1: last_sid = sec_id
|
|
return chunks
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Only pdf is supported.
|
|
"""
|
|
pdf_parser = None
|
|
|
|
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
pdf_parser = Pdf()
|
|
cks = pdf_parser(filename if not binary else binary,
|
|
from_page=from_page, to_page=to_page, callback=callback)
|
|
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
|
doc = {
|
|
"docnm_kwd": filename
|
|
}
|
|
doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
|
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
|
|
|
eng = lang.lower() == "english"
|
|
|
|
i = 0
|
|
chunk = []
|
|
tk_cnt = 0
|
|
res = []
|
|
def add_chunk():
|
|
nonlocal chunk, res, doc, pdf_parser, tk_cnt
|
|
d = copy.deepcopy(doc)
|
|
ck = "\n".join(chunk)
|
|
tokenize(d, pdf_parser.remove_tag(ck), eng)
|
|
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
|
add_positions(d, poss)
|
|
res.append(d)
|
|
chunk = []
|
|
tk_cnt = 0
|
|
|
|
while i < len(cks):
|
|
if tk_cnt > 256: add_chunk()
|
|
txt = cks[i]
|
|
txt_ = pdf_parser.remove_tag(txt)
|
|
i += 1
|
|
cnt = num_tokens_from_string(txt_)
|
|
chunk.append(txt)
|
|
tk_cnt += cnt
|
|
if chunk: add_chunk()
|
|
|
|
for i, d in enumerate(res):
|
|
print(d)
|
|
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
chunk(sys.argv[1], callback=dummy)
|
|
|