|
import json, re, sys, os, hashlib, copy, glob, util, time, random |
|
from util.es_conn import HuEs, Postgres |
|
from util import rmSpace, findMaxDt |
|
from FlagEmbedding import FlagModel |
|
from nlp import huchunk, huqie |
|
import base64, hashlib |
|
from io import BytesIO |
|
from elasticsearch_dsl import Q |
|
from parser import ( |
|
PdfParser, |
|
DocxParser, |
|
ExcelParser |
|
) |
|
from nlp.huchunk import ( |
|
PdfChunker, |
|
DocxChunker, |
|
ExcelChunker, |
|
PptChunker, |
|
TextChunker |
|
) |
|
|
|
ES = HuEs("infiniflow") |
|
BATCH_SIZE = 64 |
|
PG = Postgres("infiniflow", "docgpt") |
|
|
|
PDF = PdfChunker(PdfParser()) |
|
DOC = DocxChunker(DocxParser()) |
|
EXC = ExcelChunker(ExcelParser()) |
|
PPT = PptChunker() |
|
|
|
|
|
def chuck_doc(name): |
|
name = os.path.split(name)[-1].lower().split(".")[-1] |
|
if name.find("pdf") >= 0: return PDF(name) |
|
if name.find("doc") >= 0: return DOC(name) |
|
if name.find("xlsx") >= 0: return EXC(name) |
|
if name.find("ppt") >= 0: return PDF(name) |
|
if name.find("pdf") >= 0: return PPT(name) |
|
|
|
if re.match(r"(txt|csv)", name): return TextChunker(name) |
|
|
|
|
|
def collect(comm, mod, tm): |
|
sql = f""" |
|
select |
|
did, |
|
uid, |
|
doc_name, |
|
location, |
|
updated_at |
|
from docinfo |
|
where |
|
updated_at >= '{tm}' |
|
and kb_progress = 0 |
|
and type = 'doc' |
|
and MOD(uid, {comm}) = {mod} |
|
order by updated_at asc |
|
limit 1000 |
|
""" |
|
df = PG.select(sql) |
|
df = df.fillna("") |
|
mtm = str(df["updated_at"].max())[:19] |
|
print("TOTAL:", len(df), "To: ", mtm) |
|
return df, mtm |
|
|
|
|
|
def set_progress(did, prog, msg): |
|
sql = f""" |
|
update docinfo set kb_progress={prog}, kb_progress_msg='{msg}' where did={did} |
|
""" |
|
PG.update(sql) |
|
|
|
|
|
def build(row): |
|
if row["size"] > 256000000: |
|
set_progress(row["did"], -1, "File size exceeds( <= 256Mb )") |
|
return [] |
|
doc = { |
|
"doc_id": row["did"], |
|
"title_tks": huqie.qie(os.path.split(row["location"])[-1]), |
|
"updated_at": row["updated_at"] |
|
} |
|
random.seed(time.time()) |
|
set_progress(row["did"], random.randint(0, 20)/100., "Finished preparing! Start to slice file!") |
|
obj = chuck_doc(row["location"]) |
|
if not obj: |
|
set_progress(row["did"], -1, "Unsuported file type.") |
|
return [] |
|
|
|
set_progress(row["did"], random.randint(20, 60)/100.) |
|
|
|
output_buffer = BytesIO() |
|
docs = [] |
|
md5 = hashlib.md5() |
|
for txt, img in obj.text_chunks: |
|
d = copy.deepcopy(doc) |
|
md5.update((txt + str(d["doc_id"])).encode("utf-8")) |
|
d["_id"] = md5.hexdigest() |
|
d["content_ltks"] = huqie.qie(txt) |
|
d["docnm_kwd"] = rmSpace(d["docnm_tks"]) |
|
if not img: |
|
docs.append(d) |
|
continue |
|
img.save(output_buffer, format='JPEG') |
|
d["img_bin"] = base64.b64encode(output_buffer.getvalue()) |
|
docs.append(d) |
|
|
|
for arr, img in obj.table_chunks: |
|
for i, txt in enumerate(arr): |
|
d = copy.deepcopy(doc) |
|
d["content_ltks"] = huqie.qie(txt) |
|
md5.update((txt + str(d["doc_id"])).encode("utf-8")) |
|
d["_id"] = md5.hexdigest() |
|
if not img: |
|
docs.append(d) |
|
continue |
|
img.save(output_buffer, format='JPEG') |
|
d["img_bin"] = base64.b64encode(output_buffer.getvalue()) |
|
docs.append(d) |
|
set_progress(row["did"], random.randint(60, 70)/100., "Finished slicing. Start to embedding the content.") |
|
|
|
return docs |
|
|
|
|
|
def index_name(uid):return f"docgpt_{uid}" |
|
|
|
def init_kb(row): |
|
idxnm = index_name(row["uid"]) |
|
if ES.indexExist(idxnm): return |
|
return ES.createIdx(idxnm, json.load(open("res/mapping.json", "r"))) |
|
|
|
|
|
model = None |
|
def embedding(docs): |
|
global model |
|
tts = model.encode([rmSpace(d["title_tks"]) for d in docs]) |
|
cnts = model.encode([rmSpace(d["content_ltks"]) for d in docs]) |
|
vects = 0.1 * tts + 0.9 * cnts |
|
assert len(vects) == len(docs) |
|
for i,d in enumerate(docs):d["q_vec"] = vects[i].tolist() |
|
for d in docs: |
|
set_progress(d["doc_id"], random.randint(70, 95)/100., |
|
"Finished embedding! Start to build index!") |
|
|
|
|
|
def main(comm, mod): |
|
tm_fnm = f"res/{comm}-{mod}.tm" |
|
tmf = open(tm_fnm, "a+") |
|
tm = findMaxDt(tm_fnm) |
|
rows, tm = collect(comm, mod, tm) |
|
for r in rows: |
|
if r["is_deleted"]: |
|
ES.deleteByQuery(Q("term", dock_id=r["did"]), index_name(r["uid"])) |
|
continue |
|
|
|
cks = build(r) |
|
|
|
|
|
embedding(cks) |
|
if cks: init_kb(r) |
|
ES.bulk(cks, index_name(r["uid"])) |
|
tmf.write(str(r["updated_at"]) + "\n") |
|
tmf.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
from mpi4py import MPI |
|
comm = MPI.COMM_WORLD |
|
rank = comm.Get_rank() |
|
main(comm, rank) |
|
|
|
|