ragflow / rag /utils /infinity_conn.py
zhichyu's picture
Fixed retrieval TypeError: unhashable type: 'list' (#3966)
e033370
raw
history blame
20.2 kB
import logging
import os
import re
import json
import time
import infinity
from infinity.common import ConflictType, InfinityException, SortType
from infinity.index import IndexInfo, IndexType
from infinity.connection_pool import ConnectionPool
from infinity.errors import ErrorCode
from rag import settings
from rag.utils import singleton
import polars as pl
from polars.series.series import Series
from api.utils.file_utils import get_project_base_directory
from rag.utils.doc_store_conn import (
DocStoreConnection,
MatchExpr,
MatchTextExpr,
MatchDenseExpr,
FusionExpr,
OrderByExpr,
)
logger = logging.getLogger('ragflow.infinity_conn')
def equivalent_condition_to_str(condition: dict) -> str:
assert "_id" not in condition
cond = list()
for k, v in condition.items():
if not isinstance(k, str) or not v:
continue
if isinstance(v, list):
inCond = list()
for item in v:
if isinstance(item, str):
inCond.append(f"'{item}'")
else:
inCond.append(str(item))
if inCond:
strInCond = ", ".join(inCond)
strInCond = f"{k} IN ({strInCond})"
cond.append(strInCond)
elif isinstance(v, str):
cond.append(f"{k}='{v}'")
else:
cond.append(f"{k}={str(v)}")
return " AND ".join(cond)
def concat_dataframes(df_list: list[pl.DataFrame], selectFields: list[str]) -> pl.DataFrame:
"""
Concatenate multiple dataframes into one.
"""
if df_list:
return pl.concat(df_list)
schema = dict()
for fieldnm in selectFields:
schema[fieldnm] = str
return pl.DataFrame(schema=schema)
@singleton
class InfinityConnection(DocStoreConnection):
def __init__(self):
self.dbName = settings.INFINITY.get("db_name", "default_db")
infinity_uri = settings.INFINITY["uri"]
if ":" in infinity_uri:
host, port = infinity_uri.split(":")
infinity_uri = infinity.common.NetworkAddress(host, int(port))
self.connPool = None
logger.info(f"Use Infinity {infinity_uri} as the doc engine.")
for _ in range(24):
try:
connPool = ConnectionPool(infinity_uri)
inf_conn = connPool.get_conn()
res = inf_conn.show_current_node()
connPool.release_conn(inf_conn)
self.connPool = connPool
if res.error_code == ErrorCode.OK and res.server_status=="started":
break
logger.warn(f"Infinity status: {res.server_status}. Waiting Infinity {infinity_uri} to be healthy.")
time.sleep(5)
except Exception as e:
logger.warning(f"{str(e)}. Waiting Infinity {infinity_uri} to be healthy.")
time.sleep(5)
if self.connPool is None:
msg = f"Infinity {infinity_uri} didn't become healthy in 120s."
logger.error(msg)
raise Exception(msg)
logger.info(f"Infinity {infinity_uri} is healthy.")
"""
Database operations
"""
def dbType(self) -> str:
return "infinity"
def health(self) -> dict:
"""
Return the health status of the database.
TODO: Infinity-sdk provides health() to wrap `show global variables` and `show tables`
"""
inf_conn = self.connPool.get_conn()
res = inf_conn.show_current_node()
self.connPool.release_conn(inf_conn)
res2 = {
"type": "infinity",
"status": "green" if res.error_code == 0 and res.server_status == "started" else "red",
"error": res.error_msg,
}
return res2
"""
Table operations
"""
def createIdx(self, indexName: str, knowledgebaseId: str, vectorSize: int):
table_name = f"{indexName}_{knowledgebaseId}"
inf_conn = self.connPool.get_conn()
inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
fp_mapping = os.path.join(
get_project_base_directory(), "conf", "infinity_mapping.json"
)
if not os.path.exists(fp_mapping):
raise Exception(f"Mapping file not found at {fp_mapping}")
schema = json.load(open(fp_mapping))
vector_name = f"q_{vectorSize}_vec"
schema[vector_name] = {"type": f"vector,{vectorSize},float"}
inf_table = inf_db.create_table(
table_name,
schema,
ConflictType.Ignore,
)
inf_table.create_index(
"q_vec_idx",
IndexInfo(
vector_name,
IndexType.Hnsw,
{
"M": "16",
"ef_construction": "50",
"metric": "cosine",
"encode": "lvq",
},
),
ConflictType.Ignore,
)
text_suffix = ["_tks", "_ltks", "_kwd"]
for field_name, field_info in schema.items():
if field_info["type"] != "varchar":
continue
for suffix in text_suffix:
if field_name.endswith(suffix):
inf_table.create_index(
f"text_idx_{field_name}",
IndexInfo(
field_name, IndexType.FullText, {"ANALYZER": "standard"}
),
ConflictType.Ignore,
)
break
self.connPool.release_conn(inf_conn)
logger.info(
f"INFINITY created table {table_name}, vector size {vectorSize}"
)
def deleteIdx(self, indexName: str, knowledgebaseId: str):
table_name = f"{indexName}_{knowledgebaseId}"
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
db_instance.drop_table(table_name, ConflictType.Ignore)
self.connPool.release_conn(inf_conn)
logger.info(f"INFINITY dropped table {table_name}")
def indexExist(self, indexName: str, knowledgebaseId: str) -> bool:
table_name = f"{indexName}_{knowledgebaseId}"
try:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
_ = db_instance.get_table(table_name)
self.connPool.release_conn(inf_conn)
return True
except Exception as e:
logger.warning(f"INFINITY indexExist {str(e)}")
return False
"""
CRUD operations
"""
def search(
self,
selectFields: list[str],
highlightFields: list[str],
condition: dict,
matchExprs: list[MatchExpr],
orderBy: OrderByExpr,
offset: int,
limit: int,
indexNames: str | list[str],
knowledgebaseIds: list[str],
) -> list[dict] | pl.DataFrame:
"""
TODO: Infinity doesn't provide highlight
"""
if isinstance(indexNames, str):
indexNames = indexNames.split(",")
assert isinstance(indexNames, list) and len(indexNames) > 0
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
df_list = list()
table_list = list()
if "id" not in selectFields:
selectFields.append("id")
# Prepare expressions common to all tables
filter_cond = ""
filter_fulltext = ""
if condition:
filter_cond = equivalent_condition_to_str(condition)
for matchExpr in matchExprs:
if isinstance(matchExpr, MatchTextExpr):
if len(filter_cond) != 0 and "filter" not in matchExpr.extra_options:
matchExpr.extra_options.update({"filter": filter_cond})
fields = ",".join(matchExpr.fields)
filter_fulltext = (
f"filter_fulltext('{fields}', '{matchExpr.matching_text}')"
)
if len(filter_cond) != 0:
filter_fulltext = f"({filter_cond}) AND {filter_fulltext}"
logger.debug(f"filter_fulltext: {filter_fulltext}")
minimum_should_match = matchExpr.extra_options.get("minimum_should_match", 0.0)
if isinstance(minimum_should_match, float):
str_minimum_should_match = str(int(minimum_should_match * 100)) + "%"
matchExpr.extra_options["minimum_should_match"] = str_minimum_should_match
for k, v in matchExpr.extra_options.items():
if not isinstance(v, str):
matchExpr.extra_options[k] = str(v)
elif isinstance(matchExpr, MatchDenseExpr):
if len(filter_cond) != 0 and "filter" not in matchExpr.extra_options:
matchExpr.extra_options.update({"filter": filter_fulltext})
for k, v in matchExpr.extra_options.items():
if not isinstance(v, str):
matchExpr.extra_options[k] = str(v)
order_by_expr_list = list()
if orderBy.fields:
for order_field in orderBy.fields:
if order_field[1] == 0:
order_by_expr_list.append((order_field[0], SortType.Asc))
else:
order_by_expr_list.append((order_field[0], SortType.Desc))
# Scatter search tables and gather the results
for indexName in indexNames:
for knowledgebaseId in knowledgebaseIds:
table_name = f"{indexName}_{knowledgebaseId}"
try:
table_instance = db_instance.get_table(table_name)
except Exception:
continue
table_list.append(table_name)
builder = table_instance.output(selectFields)
if len(matchExprs) > 0:
for matchExpr in matchExprs:
if isinstance(matchExpr, MatchTextExpr):
fields = ",".join(matchExpr.fields)
builder = builder.match_text(
fields,
matchExpr.matching_text,
matchExpr.topn,
matchExpr.extra_options,
)
elif isinstance(matchExpr, MatchDenseExpr):
builder = builder.match_dense(
matchExpr.vector_column_name,
matchExpr.embedding_data,
matchExpr.embedding_data_type,
matchExpr.distance_type,
matchExpr.topn,
matchExpr.extra_options,
)
elif isinstance(matchExpr, FusionExpr):
builder = builder.fusion(
matchExpr.method, matchExpr.topn, matchExpr.fusion_params
)
else:
if len(filter_cond) > 0:
builder.filter(filter_cond)
if orderBy.fields:
builder.sort(order_by_expr_list)
builder.offset(offset).limit(limit)
kb_res = builder.to_pl()
df_list.append(kb_res)
self.connPool.release_conn(inf_conn)
res = concat_dataframes(df_list, selectFields)
logger.debug(f"INFINITY search tables: {str(table_list)}, result: {str(res)}")
return res
def get(
self, chunkId: str, indexName: str, knowledgebaseIds: list[str]
) -> dict | None:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
df_list = list()
assert isinstance(knowledgebaseIds, list)
table_list = list()
for knowledgebaseId in knowledgebaseIds:
table_name = f"{indexName}_{knowledgebaseId}"
table_list.append(table_name)
table_instance = db_instance.get_table(table_name)
kb_res = table_instance.output(["*"]).filter(f"id = '{chunkId}'").to_pl()
if len(kb_res) != 0 and kb_res.shape[0] > 0:
df_list.append(kb_res)
self.connPool.release_conn(inf_conn)
res = concat_dataframes(df_list, ["id"])
logger.debug(f"INFINITY get tables: {str(table_list)}, result: {str(res)}")
res_fields = self.getFields(res, res.columns)
return res_fields.get(chunkId, None)
def insert(
self, documents: list[dict], indexName: str, knowledgebaseId: str
) -> list[str]:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{indexName}_{knowledgebaseId}"
try:
table_instance = db_instance.get_table(table_name)
except InfinityException as e:
# src/common/status.cppm, kTableNotExist = 3022
if e.error_code != ErrorCode.TABLE_NOT_EXIST:
raise
vector_size = 0
patt = re.compile(r"q_(?P<vector_size>\d+)_vec")
for k in documents[0].keys():
m = patt.match(k)
if m:
vector_size = int(m.group("vector_size"))
break
if vector_size == 0:
raise ValueError("Cannot infer vector size from documents")
self.createIdx(indexName, knowledgebaseId, vector_size)
table_instance = db_instance.get_table(table_name)
for d in documents:
assert "_id" not in d
assert "id" in d
for k, v in d.items():
if k in ["important_kwd", "question_kwd", "entities_kwd"]:
assert isinstance(v, list)
d[k] = "###".join(v)
elif k == 'kb_id':
if isinstance(d[k], list):
d[k] = d[k][0] # since d[k] is a list, but we need a str
elif k == "position_int":
assert isinstance(v, list)
arr = [num for row in v for num in row]
d[k] = "_".join(f"{num:08x}" for num in arr)
elif k in ["page_num_int", "top_int", "position_int"]:
assert isinstance(v, list)
d[k] = "_".join(f"{num:08x}" for num in v)
ids = ["'{}'".format(d["id"]) for d in documents]
str_ids = ", ".join(ids)
str_filter = f"id IN ({str_ids})"
table_instance.delete(str_filter)
# for doc in documents:
# logger.info(f"insert position_int: {doc['position_int']}")
# logger.info(f"InfinityConnection.insert {json.dumps(documents)}")
table_instance.insert(documents)
self.connPool.release_conn(inf_conn)
logger.debug(f"inserted into {table_name} {str_ids}.")
return []
def update(
self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str
) -> bool:
# if 'position_int' in newValue:
# logger.info(f"update position_int: {newValue['position_int']}")
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{indexName}_{knowledgebaseId}"
table_instance = db_instance.get_table(table_name)
filter = equivalent_condition_to_str(condition)
for k, v in newValue.items():
if k.endswith("_kwd") and isinstance(v, list):
newValue[k] = " ".join(v)
elif k == 'kb_id':
if isinstance(newValue[k], list):
newValue[k] = newValue[k][0] # since d[k] is a list, but we need a str
elif k == "position_int":
assert isinstance(v, list)
arr = [num for row in v for num in row]
newValue[k] = "_".join(f"{num:08x}" for num in arr)
elif k in ["page_num_int", "top_int"]:
assert isinstance(v, list)
newValue[k] = "_".join(f"{num:08x}" for num in v)
table_instance.update(filter, newValue)
self.connPool.release_conn(inf_conn)
return True
def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{indexName}_{knowledgebaseId}"
filter = equivalent_condition_to_str(condition)
try:
table_instance = db_instance.get_table(table_name)
except Exception:
logger.warning(
f"Skipped deleting `{filter}` from table {table_name} since the table doesn't exist."
)
return 0
res = table_instance.delete(filter)
self.connPool.release_conn(inf_conn)
return res.deleted_rows
"""
Helper functions for search result
"""
def getTotal(self, res):
return len(res)
def getChunkIds(self, res):
return list(res["id"])
def getFields(self, res, fields: list[str]) -> list[str, dict]:
res_fields = {}
if not fields:
return {}
num_rows = len(res)
column_id = res["id"]
for i in range(num_rows):
id = column_id[i]
m = {"id": id}
for fieldnm in fields:
if fieldnm not in res:
m[fieldnm] = None
continue
v = res[fieldnm][i]
if isinstance(v, Series):
v = list(v)
elif fieldnm in ["important_kwd", "question_kwd", "entities_kwd"]:
assert isinstance(v, str)
v = [kwd for kwd in v.split("###") if kwd]
elif fieldnm == "position_int":
assert isinstance(v, str)
if v:
arr = [int(hex_val, 16) for hex_val in v.split('_')]
v = [arr[i:i + 4] for i in range(0, len(arr), 4)]
else:
v = []
elif fieldnm in ["page_num_int", "top_int"]:
assert isinstance(v, str)
if v:
v = [int(hex_val, 16) for hex_val in v.split('_')]
else:
v = []
else:
if not isinstance(v, str):
v = str(v)
# if fieldnm.endswith("_tks"):
# v = rmSpace(v)
m[fieldnm] = v
res_fields[id] = m
return res_fields
def getHighlight(self, res, keywords: list[str], fieldnm: str):
ans = {}
num_rows = len(res)
column_id = res["id"]
for i in range(num_rows):
id = column_id[i]
txt = res[fieldnm][i]
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE)
txts = []
for t in re.split(r"[.?!;\n]", txt):
for w in keywords:
t = re.sub(
r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"
% re.escape(w),
r"\1<em>\2</em>\3",
t,
flags=re.IGNORECASE | re.MULTILINE,
)
if not re.search(
r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE
):
continue
txts.append(t)
ans[id] = "...".join(txts)
return ans
def getAggregation(self, res, fieldnm: str):
"""
TODO: Infinity doesn't provide aggregation
"""
return list()
"""
SQL
"""
def sql(sql: str, fetch_size: int, format: str):
raise NotImplementedError("Not implemented")