KevinHuSh
build python version rag-flow (#21)
3079197
raw
history blame
2.02 kB
from abc import ABC
from openai import OpenAI
import os
import base64
from io import BytesIO
class Base(ABC):
def describe(self, image, max_tokens=300):
raise NotImplementedError("Please implement encode method!")
class GptV4(Base):
def __init__(self):
import openapi
openapi.api_key = os.environ["OPENAPI_KEY"]
self.client = OpenAI()
def describe(self, image, max_tokens=300):
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
except Exception as e:
image.save(buffered, format="PNG")
b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
res = self.client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等。",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{b64}"
},
},
],
}
],
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip()
class QWen(Base):
def chat(self, system, history, gen_conf):
from http import HTTPStatus
from dashscope import Generation
from dashscope.api_entities.dashscope_response import Role
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
response = Generation.call(
Generation.Models.qwen_turbo,
messages=messages,
result_format='message'
)
if response.status_code == HTTPStatus.OK:
return response.output.choices[0]['message']['content']
return response.message