File size: 4,024 Bytes
3079197 484e5ab 3079197 3245107 cfd888e d0db329 4c52eb9 3245107 cfd888e d0db329 3245107 34b2ab3 3245107 34b2ab3 3245107 a8294f2 4c52eb9 cfd888e 4c52eb9 cfd888e 4c52eb9 cfd888e 3245107 34b2ab3 d0db329 34b2ab3 3245107 a8294f2 3245107 34b2ab3 d0db329 a8294f2 3245107 cfd888e 3245107 cfd888e 5e0a689 a8294f2 cfd888e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from copy import deepcopy
from openai import OpenAI
import openai
from rag.nlp import is_english
class Base(ABC):
def __init__(self, key, model_name):
pass
def chat(self, system, history, gen_conf):
raise NotImplementedError("Please implement encode method!")
class GptTurbo(Base):
def __init__(self, key, model_name="gpt-3.5-turbo"):
self.client = OpenAI(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system: history.insert(0, {"role": "system", "content": system})
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf)
ans = response.output.choices[0]['message']['content'].strip()
if response.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response.usage.completion_tokens
except openai.APIError as e:
return "**ERROR**: "+str(e), 0
from dashscope import Generation
class QWenChat(Base):
def __init__(self, key, model_name=Generation.Models.qwen_turbo):
import dashscope
dashscope.api_key = key
self.model_name = model_name
def chat(self, system, history, gen_conf):
from http import HTTPStatus
if system: history.insert(0, {"role": "system", "content": system})
response = Generation.call(
self.model_name,
messages=history,
result_format='message',
**gen_conf
)
ans = ""
tk_count = 0
if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]['message']['content']
tk_count += response.usage.output_tokens
if response.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, tk_count
return "**ERROR**: " + response.message, tk_count
from zhipuai import ZhipuAI
class ZhipuChat(Base):
def __init__(self, key, model_name="glm-3-turbo"):
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
from http import HTTPStatus
if system: history.insert(0, {"role": "system", "content": system})
try:
response = self.client.chat.completions.create(
self.model_name,
messages=history,
**gen_conf
)
ans = response.output.choices[0]['message']['content'].strip()
if response.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response.usage.completion_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0 |