File size: 4,024 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
3245107
cfd888e
 
d0db329
4c52eb9
3245107
cfd888e
 
d0db329
3245107
34b2ab3
 
 
3245107
 
 
 
 
34b2ab3
 
 
3245107
 
a8294f2
4c52eb9
cfd888e
4c52eb9
 
 
cfd888e
 
 
 
 
4c52eb9
cfd888e
3245107
 
34b2ab3
d0db329
34b2ab3
 
 
 
 
3245107
 
a8294f2
3245107
34b2ab3
d0db329
a8294f2
 
3245107
cfd888e
 
3245107
cfd888e
 
 
 
 
 
 
5e0a689
 
 
 
 
 
 
 
 
 
a8294f2
cfd888e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from abc import ABC
from copy import deepcopy

from openai import OpenAI
import openai

from rag.nlp import is_english


class Base(ABC):
    def __init__(self, key, model_name):
        pass

    def chat(self, system, history, gen_conf):
        raise NotImplementedError("Please implement encode method!")


class GptTurbo(Base):
    def __init__(self, key, model_name="gpt-3.5-turbo"):
        self.client = OpenAI(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system: history.insert(0, {"role": "system", "content": system})
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                **gen_conf)
            ans = response.output.choices[0]['message']['content'].strip()
            if response.output.choices[0].get("finish_reason", "") == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response.usage.completion_tokens
        except openai.APIError as e:
            return "**ERROR**: "+str(e), 0


from dashscope import Generation
class QWenChat(Base):
    def __init__(self, key, model_name=Generation.Models.qwen_turbo):
        import dashscope
        dashscope.api_key = key
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        from http import HTTPStatus
        if system: history.insert(0, {"role": "system", "content": system})
        response = Generation.call(
            self.model_name,
            messages=history,
            result_format='message',
            **gen_conf
        )
        ans = ""
        tk_count = 0
        if response.status_code == HTTPStatus.OK:
            ans += response.output.choices[0]['message']['content']
            tk_count += response.usage.output_tokens
            if response.output.choices[0].get("finish_reason", "") == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, tk_count

        return "**ERROR**: " + response.message, tk_count


from zhipuai import ZhipuAI
class ZhipuChat(Base):
    def __init__(self, key, model_name="glm-3-turbo"):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        from http import HTTPStatus
        if system: history.insert(0, {"role": "system", "content": system})
        try:
            response = self.client.chat.completions.create(
                self.model_name,
                messages=history,
                **gen_conf
            )
            ans = response.output.choices[0]['message']['content'].strip()
            if response.output.choices[0].get("finish_reason", "") == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response.usage.completion_tokens
        except Exception as e:
            return "**ERROR**: " + str(e), 0