File size: 12,144 Bytes
9d11681 de7c780 cf772f7 b802ae5 de7c780 c2d189b 7889c99 ce45214 74bda08 090b2e7 b2dbbc3 ee39a70 0874636 ee39a70 9d11681 0874636 cf772f7 7889c99 c2d189b 7889c99 cf772f7 7889c99 9d11681 cf772f7 0874636 cf772f7 8f5dc1b cf772f7 0874636 cf772f7 0874636 de7c780 8f5dc1b cf772f7 de7c780 cf772f7 633d85b 172caf6 633d85b 172caf6 ce45214 74bda08 ce45214 d1a0b33 ce45214 74bda08 ce45214 278278b d1a0b33 278278b d1a0b33 278278b 74bda08 d1a0b33 74bda08 278278b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import requests
from .modules.assistant import Assistant
from .modules.dataset import DataSet
from .modules.document import Document
from .modules.chunk import Chunk
class RAGFlow:
def __init__(self, user_key, base_url, version='v1'):
"""
api_url: http://<host_address>/api/v1
"""
self.user_key = user_key
self.api_url = f"{base_url}/api/{version}"
self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)}
def post(self, path, param, stream=False):
res = requests.post(url=self.api_url + path, json=param, headers=self.authorization_header, stream=stream)
return res
def get(self, path, params=None):
res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header)
return res
def delete(self, path, params):
res = requests.delete(url=self.api_url + path, params=params, headers=self.authorization_header)
return res
def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English",
permission: str = "me",
document_count: int = 0, chunk_count: int = 0, parse_method: str = "naive",
parser_config: DataSet.ParserConfig = None) -> DataSet:
if parser_config is None:
parser_config = DataSet.ParserConfig(self, {"chunk_token_count": 128, "layout_recognize": True,
"delimiter": "\n!?。;!?", "task_page_size": 12})
parser_config = parser_config.to_json()
res = self.post("/dataset/save",
{"name": name, "avatar": avatar, "description": description, "language": language,
"permission": permission,
"document_count": document_count, "chunk_count": chunk_count, "parse_method": parse_method,
"parser_config": parser_config
}
)
res = res.json()
if res.get("retmsg") == "success":
return DataSet(self, res["data"])
raise Exception(res["retmsg"])
def list_datasets(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True) -> \
List[DataSet]:
res = self.get("/dataset/list", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc})
res = res.json()
result_list = []
if res.get("retmsg") == "success":
for data in res['data']:
result_list.append(DataSet(self, data))
return result_list
raise Exception(res["retmsg"])
def get_dataset(self, id: str = None, name: str = None) -> DataSet:
res = self.get("/dataset/detail", {"id": id, "name": name})
res = res.json()
if res.get("retmsg") == "success":
return DataSet(self, res['data'])
raise Exception(res["retmsg"])
def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [],
llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant:
datasets = []
for dataset in knowledgebases:
datasets.append(dataset.to_json())
if llm is None:
llm = Assistant.LLM(self, {"model_name": None,
"temperature": 0.1,
"top_p": 0.3,
"presence_penalty": 0.4,
"frequency_penalty": 0.7,
"max_tokens": 512, })
if prompt is None:
prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.7,
"top_n": 8,
"variables": [{
"key": "knowledge",
"optional": True
}], "rerank_model": "",
"empty_response": None,
"opener": None,
"show_quote": True,
"prompt": None})
if prompt.opener is None:
prompt.opener = "Hi! I'm your assistant, what can I do for you?"
if prompt.prompt is None:
prompt.prompt = (
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
)
temp_dict = {"name": name,
"avatar": avatar,
"knowledgebases": datasets,
"llm": llm.to_json(),
"prompt": prompt.to_json()}
res = self.post("/assistant/save", temp_dict)
res = res.json()
if res.get("retmsg") == "success":
return Assistant(self, res["data"])
raise Exception(res["retmsg"])
def get_assistant(self, id: str = None, name: str = None) -> Assistant:
res = self.get("/assistant/get", {"id": id, "name": name})
res = res.json()
if res.get("retmsg") == "success":
return Assistant(self, res['data'])
raise Exception(res["retmsg"])
def list_assistants(self) -> List[Assistant]:
res = self.get("/assistant/list")
res = res.json()
result_list = []
if res.get("retmsg") == "success":
for data in res['data']:
result_list.append(Assistant(self, data))
return result_list
raise Exception(res["retmsg"])
def create_document(self, ds: DataSet, name: str, blob: bytes) -> bool:
url = f"/doc/dataset/{ds.id}/documents/upload"
files = {
'file': (name, blob)
}
headers = {
'Authorization': f"Bearer {ds.rag.user_key}"
}
response = requests.post(self.api_url + url, files=files,
headers=headers)
if response.status_code == 200 and response.json().get('retmsg') == 'success':
return True
else:
raise Exception(f"Upload failed: {response.json().get('retmsg')}")
return False
def get_document(self, id: str = None, name: str = None) -> Document:
res = self.get("/doc/infos", {"id": id, "name": name})
res = res.json()
if res.get("retmsg") == "success":
return Document(self, res['data'])
raise Exception(res["retmsg"])
def async_parse_documents(self, doc_ids):
"""
Asynchronously start parsing multiple documents without waiting for completion.
:param doc_ids: A list containing multiple document IDs.
"""
try:
if not doc_ids or not isinstance(doc_ids, list):
raise ValueError("doc_ids must be a non-empty list of document IDs")
data = {"document_ids": doc_ids, "run": 1}
res = self.post(f'/doc/run', data)
if res.status_code != 200:
raise Exception(f"Failed to start async parsing for documents: {res.text}")
print(f"Async parsing started successfully for documents: {doc_ids}")
except Exception as e:
print(f"Error occurred during async parsing for documents: {str(e)}")
raise
def async_cancel_parse_documents(self, doc_ids):
"""
Cancel the asynchronous parsing of multiple documents.
:param doc_ids: A list containing multiple document IDs.
"""
try:
if not doc_ids or not isinstance(doc_ids, list):
raise ValueError("doc_ids must be a non-empty list of document IDs")
data = {"document_ids": doc_ids, "run": 2}
res = self.post(f'/doc/run', data)
if res.status_code != 200:
raise Exception(f"Failed to cancel async parsing for documents: {res.text}")
print(f"Async parsing canceled successfully for documents: {doc_ids}")
except Exception as e:
print(f"Error occurred during canceling parsing for documents: {str(e)}")
raise
def retrieval(self,
question,
datasets=None,
documents=None,
offset=0,
limit=6,
similarity_threshold=0.1,
vector_similarity_weight=0.3,
top_k=1024):
"""
Perform document retrieval based on the given parameters.
:param question: The query question.
:param datasets: A list of datasets (optional, as documents may be provided directly).
:param documents: A list of documents (if specific documents are provided).
:param offset: Offset for the retrieval results.
:param limit: Maximum number of retrieval results.
:param similarity_threshold: Similarity threshold.
:param vector_similarity_weight: Weight of vector similarity.
:param top_k: Number of top most similar documents to consider (for pre-filtering or ranking).
Note: This is a hypothetical implementation and may need adjustments based on the actual backend service API.
"""
try:
data = {
"question": question,
"datasets": datasets if datasets is not None else [],
"documents": [doc.id if hasattr(doc, 'id') else doc for doc in
documents] if documents is not None else [],
"offset": offset,
"limit": limit,
"similarity_threshold": similarity_threshold,
"vector_similarity_weight": vector_similarity_weight,
"top_k": top_k,
"knowledgebase_id": datasets,
}
# Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
res = self.post(f'/doc/retrieval_test', data)
# Check the response status code
if res.status_code == 200:
res_data = res.json()
if res_data.get("retmsg") == "success":
chunks = []
for chunk_data in res_data["data"].get("chunks", []):
chunk = Chunk(self, chunk_data)
chunks.append(chunk)
return chunks
else:
raise Exception(f"Error fetching chunks: {res_data.get('retmsg')}")
else:
raise Exception(f"API request failed with status code {res.status_code}")
except Exception as e:
print(f"An error occurred during retrieval: {e}")
raise
|