File size: 5,163 Bytes
96a1a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import copy
import re
from collections import Counter
from rag.app import callback__, bullets_category, BULLET_PATTERN, is_english, tokenize
from rag.nlp import huqie, stemmer
from rag.parser.docx_parser import HuDocxParser
from rag.parser.pdf_parser import HuParser
from nltk.tokenize import word_tokenize
import numpy as np
from rag.utils import num_tokens_from_string


class Pdf(HuParser):
    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page)
        callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4,
                   "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback)

        from timeit import default_timer as timer
        start = timer()
        self._layouts_paddle(zoomin)
        callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4,
                   "Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback)
        print("paddle layouts:", timer() - start)
        self._table_transformer_job(zoomin)
        callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4,
                   "Page {}~{}: Table analysis finished".format(from_page, min(to_page, self.total_page)), callback)
        self._text_merge()
        column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
        self._concat_downward(concat_between_pages=False)
        self._filter_forpages()
        callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4,
                   "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback)
        tbls = self._extract_table_figure(True, zoomin, False)

        # clean mess
        for b in self.boxes:
            b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())

        # merge chunks with the same bullets
        i = 0
        while i + 1 < len(self.boxes):
            b = self.boxes[i]
            b_ = self.boxes[i + 1]
            if b["text"].strip()[0] != b_["text"].strip()[0] \
                    or b["page_number"]!=b_["page_number"] \
                    or b["top"] > b_["bottom"]:
                i += 1
                continue
            b_["text"] = b["text"] + "\n" + b_["text"]
            b_["x0"] = min(b["x0"], b_["x0"])
            b_["x1"] = max(b["x1"], b_["x1"])
            b_["top"] = b["top"]
            self.boxes.pop(i)
        # merge title with decent chunk
        i = 0
        while i + 1 < len(self.boxes):
            b = self.boxes[i]
            if b.get("layoutno","").find("title") < 0:
                i += 1
                continue
            b_ = self.boxes[i + 1]
            b_["text"] = b["text"] + "\n" + b_["text"]
            b_["x0"] = min(b["x0"], b_["x0"])
            b_["x1"] = max(b["x1"], b_["x1"])
            b_["top"] = b["top"]
            self.boxes.pop(i)

        for b in self.boxes: print(b["text"], b.get("layoutno"))

        print(tbls)
        return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls


def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
    pdf_parser = None
    paper = {}

    if re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf()
        cks, tbls = pdf_parser(filename if not binary else binary,
                           from_page=from_page, to_page=to_page, callback=callback)
    doc = {
        "docnm_kwd": filename
    }
    doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
    doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
    # is it English
    eng = pdf_parser.is_english

    res = []
    # add tables
    for img, rows in tbls:
        bs = 10
        de = ";" if eng else ";"
        for i in range(0, len(rows), bs):
            d = copy.deepcopy(doc)
            r = de.join(rows[i:i + bs])
            r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
            tokenize(d, r, eng)
            d["image"] = img
            res.append(d)

    i = 0
    chunk = []
    tk_cnt = 0
    def add_chunk():
        nonlocal chunk, res, doc, pdf_parser, tk_cnt
        d = copy.deepcopy(doc)
        ck = "\n".join(chunk)
        tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
        d["image"] = pdf_parser.crop(ck)
        res.append(d)
        chunk = []
        tk_cnt = 0

    while i < len(cks):
        if tk_cnt > 128: add_chunk()
        txt = cks[i]
        txt_ = pdf_parser.remove_tag(txt)
        i += 1
        cnt = num_tokens_from_string(txt_)
        chunk.append(txt)
        tk_cnt += cnt
    if chunk: add_chunk()
    for i, d in enumerate(res):
        print(d)
        # d["image"].save(f"./logs/{i}.jpg")
    return res


if __name__ == "__main__":
    import sys

    chunk(sys.argv[1])