File size: 5,163 Bytes
96a1a44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import copy
import re
from collections import Counter
from rag.app import callback__, bullets_category, BULLET_PATTERN, is_english, tokenize
from rag.nlp import huqie, stemmer
from rag.parser.docx_parser import HuDocxParser
from rag.parser.pdf_parser import HuParser
from nltk.tokenize import word_tokenize
import numpy as np
from rag.utils import num_tokens_from_string
class Pdf(HuParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page)
callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4,
"Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback)
from timeit import default_timer as timer
start = timer()
self._layouts_paddle(zoomin)
callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4,
"Page {}~{}: Layout analysis finished".format(from_page, min(to_page, self.total_page)), callback)
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4,
"Page {}~{}: Table analysis finished".format(from_page, min(to_page, self.total_page)), callback)
self._text_merge()
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
callback__((min(to_page, self.total_page) - from_page) / self.total_page / 4,
"Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback)
tbls = self._extract_table_figure(True, zoomin, False)
# clean mess
for b in self.boxes:
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
# merge chunks with the same bullets
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
b_ = self.boxes[i + 1]
if b["text"].strip()[0] != b_["text"].strip()[0] \
or b["page_number"]!=b_["page_number"] \
or b["top"] > b_["bottom"]:
i += 1
continue
b_["text"] = b["text"] + "\n" + b_["text"]
b_["x0"] = min(b["x0"], b_["x0"])
b_["x1"] = max(b["x1"], b_["x1"])
b_["top"] = b["top"]
self.boxes.pop(i)
# merge title with decent chunk
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
if b.get("layoutno","").find("title") < 0:
i += 1
continue
b_ = self.boxes[i + 1]
b_["text"] = b["text"] + "\n" + b_["text"]
b_["x0"] = min(b["x0"], b_["x0"])
b_["x1"] = max(b["x1"], b_["x1"])
b_["top"] = b["top"]
self.boxes.pop(i)
for b in self.boxes: print(b["text"], b.get("layoutno"))
print(tbls)
return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
pdf_parser = None
paper = {}
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
cks, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
doc = {
"docnm_kwd": filename
}
doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
# is it English
eng = pdf_parser.is_english
res = []
# add tables
for img, rows in tbls:
bs = 10
de = ";" if eng else ";"
for i in range(0, len(rows), bs):
d = copy.deepcopy(doc)
r = de.join(rows[i:i + bs])
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
tokenize(d, r, eng)
d["image"] = img
res.append(d)
i = 0
chunk = []
tk_cnt = 0
def add_chunk():
nonlocal chunk, res, doc, pdf_parser, tk_cnt
d = copy.deepcopy(doc)
ck = "\n".join(chunk)
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
d["image"] = pdf_parser.crop(ck)
res.append(d)
chunk = []
tk_cnt = 0
while i < len(cks):
if tk_cnt > 128: add_chunk()
txt = cks[i]
txt_ = pdf_parser.remove_tag(txt)
i += 1
cnt = num_tokens_from_string(txt_)
chunk.append(txt)
tk_cnt += cnt
if chunk: add_chunk()
for i, d in enumerate(res):
print(d)
# d["image"].save(f"./logs/{i}.jpg")
return res
if __name__ == "__main__":
import sys
chunk(sys.argv[1])
|