Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
import io
|
6 |
+
|
7 |
+
# Load the dataset directly from the file system.
|
8 |
+
# Make sure 'titanic (1).csv' is uploaded to your Hugging Face Space alongside app.py
|
9 |
+
try:
|
10 |
+
df = pd.read_csv('titanic (1).csv')
|
11 |
+
except FileNotFoundError:
|
12 |
+
gr.Warning("titanic (1).csv not found. Please ensure it's uploaded to your Space.")
|
13 |
+
# Create an empty dataframe to prevent errors if file is missing during initial load
|
14 |
+
df = pd.DataFrame(columns=['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Survived'])
|
15 |
+
|
16 |
+
|
17 |
+
# Preprocessing similar to the Kaggle notebook
|
18 |
+
# Fill missing 'Age' with the median
|
19 |
+
df['Age'].fillna(df['Age'].median(), inplace=True)
|
20 |
+
# Fill missing 'Embarked' with the most frequent value
|
21 |
+
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
|
22 |
+
# Convert 'Sex' to numerical (optional for plotting, but good for consistency)
|
23 |
+
# Use .loc to avoid SettingWithCopyWarning if df is a slice
|
24 |
+
df.loc[:, 'Sex'] = df['Sex'].map({'male': 0, 'female': 1})
|
25 |
+
|
26 |
+
|
27 |
+
def plot_survival_by_feature(feature):
|
28 |
+
"""
|
29 |
+
Generates a bar plot showing the survival rate by the selected feature.
|
30 |
+
"""
|
31 |
+
# Create a copy to avoid modifying the original DataFrame in-place within the function scope
|
32 |
+
plot_df = df.copy()
|
33 |
+
|
34 |
+
plt.figure(figsize=(8, 5))
|
35 |
+
if feature in ['Sex', 'Pclass', 'Embarked']:
|
36 |
+
sns.barplot(x=feature, y='Survived', data=plot_df, palette='viridis')
|
37 |
+
plt.title(f'Survival Rate by {feature}')
|
38 |
+
plt.ylabel('Survival Rate')
|
39 |
+
if feature == 'Sex':
|
40 |
+
plt.xticks([0, 1], ['Male', 'Female'])
|
41 |
+
elif feature == 'Age':
|
42 |
+
# Bin age for better visualization in a bar plot context
|
43 |
+
bins = [0, 12, 18, 35, 60, 80]
|
44 |
+
labels = ['Children', 'Teenagers', 'Young Adults', 'Adults', 'Seniors']
|
45 |
+
plot_df['AgeGroup'] = pd.cut(plot_df['Age'], bins=bins, labels=labels, right=False)
|
46 |
+
sns.barplot(x='AgeGroup', y='Survived', data=plot_df, palette='viridis')
|
47 |
+
plt.title('Survival Rate by Age Group')
|
48 |
+
plt.ylabel('Survival Rate')
|
49 |
+
plt.xlabel('Age Group')
|
50 |
+
elif feature == 'Fare':
|
51 |
+
# Bin fare for better visualization
|
52 |
+
bins = [0, 10, 30, 100, 500]
|
53 |
+
labels = ['Low', 'Medium', 'High', 'Very High']
|
54 |
+
plot_df['FareGroup'] = pd.cut(plot_df['Fare'], bins=bins, labels=labels, right=False)
|
55 |
+
sns.barplot(x='FareGroup', y='Survived', data=plot_df, palette='viridis')
|
56 |
+
plt.title('Survival Rate by Fare Group')
|
57 |
+
plt.ylabel('Survival Rate')
|
58 |
+
plt.xlabel('Fare Group')
|
59 |
+
else:
|
60 |
+
# For SibSp and Parch, treat as categorical if few unique values, otherwise numeric distribution
|
61 |
+
if plot_df[feature].nunique() < 10: # If less than 10 unique values, treat as categories
|
62 |
+
sns.barplot(x=feature, y='Survived', data=plot_df, palette='viridis')
|
63 |
+
plt.title(f'Survival Rate by {feature}')
|
64 |
+
plt.ylabel('Survival Rate')
|
65 |
+
else:
|
66 |
+
sns.histplot(data=plot_df, x=feature, hue='Survived', kde=True, palette='viridis')
|
67 |
+
plt.title(f'Survival Distribution by {feature}')
|
68 |
+
plt.ylabel('Count')
|
69 |
+
plt.xlabel(feature)
|
70 |
+
|
71 |
+
|
72 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
73 |
+
plt.tight_layout()
|
74 |
+
# Save plot to a BytesIO object
|
75 |
+
buf = io.BytesIO()
|
76 |
+
plt.savefig(buf, format='png')
|
77 |
+
buf.seek(0)
|
78 |
+
plt.close() # Close the plot to free up memory
|
79 |
+
return buf.getvalue()
|
80 |
+
|
81 |
+
|
82 |
+
# Gradio Interface
|
83 |
+
with gr.Blocks() as demo:
|
84 |
+
gr.Markdown(
|
85 |
+
"""
|
86 |
+
# Titanic Survival Explorer
|
87 |
+
Explore the factors influencing survival on the Titanic using the provided dataset.
|
88 |
+
Select a feature from the dropdown to see its relationship with survival rates.
|
89 |
+
"""
|
90 |
+
)
|
91 |
+
|
92 |
+
with gr.Tab("Dataset Overview"):
|
93 |
+
gr.Markdown("### Raw Titanic Dataset")
|
94 |
+
gr.Dataframe(
|
95 |
+
value=df,
|
96 |
+
headers=list(df.columns),
|
97 |
+
# Infer datatype as much as possible, or specify if needed for precision
|
98 |
+
# Gradio often does a good job inferring from a DataFrame
|
99 |
+
row_count=(len(df), "fixed"),
|
100 |
+
col_count=(len(df.columns), "fixed"),
|
101 |
+
interactive=False
|
102 |
+
)
|
103 |
+
|
104 |
+
with gr.Tab("Survival Analysis by Feature"):
|
105 |
+
feature_choice = gr.Dropdown(
|
106 |
+
choices=['Sex', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'],
|
107 |
+
label="Select Feature for Analysis",
|
108 |
+
value='Sex' # Default value
|
109 |
+
)
|
110 |
+
plot_output = gr.Image(type="pil", label="Survival Plot")
|
111 |
+
|
112 |
+
feature_choice.change(plot_survival_by_feature, inputs=feature_choice, outputs=plot_output)
|
113 |
+
# Initial plot when the app loads
|
114 |
+
demo.load(plot_survival_by_feature, inputs=feature_choice, outputs=plot_output)
|
115 |
+
|
116 |
+
gr.Markdown(
|
117 |
+
"""
|
118 |
+
---
|
119 |
+
*Note: Age and Fare are binned for visualization purposes. Missing Age and Embarked values are imputed.*
|
120 |
+
"""
|
121 |
+
)
|
122 |
+
|
123 |
+
demo.launch()
|