import gradio as gr from transformers import pipeline import pandas as pd # Load dataset DATASET_PATH = "spam.csv" df = pd.read_csv(DATASET_PATH, encoding="latin1") # Load a spam classification model classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection") def spam_detector(text): result = classifier(text) return "Spam" if result[0]['label'].lower() == "Spam" else "Not Spam" # Create Gradio UI app = gr.Interface( fn=spam_detector, inputs=gr.Textbox(label="Enter a message"), outputs=gr.Textbox(label="Prediction"), title="Spam Detector", description="Enter a message to check if it's spam or not." ) # Run the app if __name__ == "__main__": print("Loaded dataset preview:") print(df.head()) app.launch()