Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,24 @@ df = pd.read_parquet(dataset_path)
|
|
10 |
classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection")
|
11 |
|
12 |
def spam_detector(text):
|
13 |
-
"""Detect if a message is spam or not."""
|
14 |
result = classifier(text)
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Create Gradio UI with enhanced styling
|
19 |
app = gr.Interface(
|
@@ -22,11 +36,10 @@ app = gr.Interface(
|
|
22 |
outputs=gr.Textbox(label="Prediction"),
|
23 |
title="AI-Powered Spam Detector",
|
24 |
description="Enter a message to check if it's spam or not, using a fine-tuned BERT model.",
|
25 |
-
theme="huggingface"
|
26 |
)
|
27 |
|
28 |
# Run the app
|
29 |
if __name__ == "__main__":
|
30 |
print("Loaded dataset preview:")
|
31 |
print(df.head())
|
32 |
-
app.launch
|
|
|
10 |
classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection")
|
11 |
|
12 |
def spam_detector(text):
|
13 |
+
"""Detect if a message is spam or not, with confidence filtering."""
|
14 |
result = classifier(text)
|
15 |
+
|
16 |
+
# Debugging: Print the raw output from the classifier
|
17 |
+
print("Model Output:", result)
|
18 |
+
|
19 |
+
# Extract label and confidence score
|
20 |
+
label = result[0]['label'].lower().strip()
|
21 |
+
confidence = result[0]['score'] # Confidence score (0 to 1)
|
22 |
+
|
23 |
+
# Confidence threshold (adjustable, 0.5 is standard)
|
24 |
+
threshold = 0.7
|
25 |
+
|
26 |
+
# Return based on confidence
|
27 |
+
if label == "spam" and confidence >= threshold:
|
28 |
+
return f"Spam (Confidence: {confidence:.2f})"
|
29 |
+
else:
|
30 |
+
return f"Not Spam (Confidence: {confidence:.2f})"
|
31 |
|
32 |
# Create Gradio UI with enhanced styling
|
33 |
app = gr.Interface(
|
|
|
36 |
outputs=gr.Textbox(label="Prediction"),
|
37 |
title="AI-Powered Spam Detector",
|
38 |
description="Enter a message to check if it's spam or not, using a fine-tuned BERT model.",
|
|
|
39 |
)
|
40 |
|
41 |
# Run the app
|
42 |
if __name__ == "__main__":
|
43 |
print("Loaded dataset preview:")
|
44 |
print(df.head())
|
45 |
+
app.launch
|