Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import re | |
| import gradio as gr | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.pipeline import make_pipeline | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn.metrics import accuracy_score | |
| from collections import Counter | |
| # 1. Load and clean data | |
| df = pd.read_csv("spam.csv", encoding="latin1")[["v1", "v2"]] | |
| df.columns = ["label", "text"] | |
| df["label"] = df["label"].map({"ham": 0, "spam": 1}) | |
| # 2. Clean text | |
| def clean_text(text): | |
| text = text.lower() | |
| text = re.sub(r"\W+", " ", text) | |
| return text.strip() | |
| df["text"] = df["text"].apply(clean_text) | |
| # 3. Split data | |
| X_train, X_test, y_train, y_test = train_test_split( | |
| df["text"], df["label"], test_size=0.2, stratify=df["label"], random_state=42 | |
| ) | |
| # 4. Build and train model | |
| model = make_pipeline( | |
| TfidfVectorizer(ngram_range=(1, 2), stop_words="english"), | |
| LogisticRegression(max_iter=1000, class_weight="balanced") | |
| ) | |
| model.fit(X_train, y_train) | |
| # 5. Evaluate | |
| accuracy = accuracy_score(y_test, model.predict(X_test)) | |
| print(f"Validation Accuracy: {accuracy:.2%}") | |
| # 6. Gradio prediction function | |
| def predict_spam(message): | |
| cleaned = clean_text(message) | |
| pred = model.predict([cleaned])[0] | |
| prob = model.predict_proba([cleaned])[0][pred] | |
| label = "π« Spam" if pred == 1 else "π© Not Spam (Ham)" | |
| return f"{label} (Confidence: {prob:.2%})" | |
| # 7. Gradio UI | |
| gr.Interface( | |
| fn=predict_spam, | |
| inputs=gr.Textbox(lines=4, label="Enter SMS Message"), | |
| outputs=gr.Text(label="Prediction"), | |
| title="SMS Spam Detector", | |
| description=f"Detects spam in SMS messages. Trained on uploaded CSV (Accuracy: {accuracy:.2%})." | |
| ).launch() | |