Spam_Detector / app.py
resolverkatla's picture
Update app.py
fe81869 verified
raw
history blame
1.88 kB
import gradio as gr
import re
from datasets import load_dataset
from sklearn.pipeline import make_pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 1. Load dataset
dataset = load_dataset("ucirvine/sms_spam", split="train")
texts = dataset["sms"]
labels = [1 if label == "spam" else 0 for label in dataset["label"]]
# 2. Clean text
def clean_text(text):
text = text.lower()
text = re.sub(r"\W+", " ", text)
return text.strip()
texts_cleaned = [clean_text(t) for t in texts]
# 3. Train/test split (use stratified sampling!)
X_train, X_test, y_train, y_test = train_test_split(
texts_cleaned, labels, test_size=0.2, random_state=42, stratify=labels
)
# 4. Build model: TF-IDF + Logistic Regression
model = make_pipeline(
TfidfVectorizer(ngram_range=(1, 2), stop_words="english", max_df=0.9),
LogisticRegression(max_iter=1000, class_weight="balanced")
)
model.fit(X_train, y_train)
# 5. Show validation accuracy
y_pred = model.predict(X_test)
print("Validation Accuracy:", accuracy_score(y_test, y_pred))
# 6. Prediction function
def predict_spam(message):
cleaned = clean_text(message)
pred = model.predict([cleaned])[0]
prob = model.predict_proba([cleaned])[0][pred]
label = "🚫 Spam" if pred == 1 else "πŸ“© Not Spam (Ham)"
return f"{label} (Confidence: {prob:.2%})"
# 7. Gradio UI
iface = gr.Interface(
fn=predict_spam,
inputs=gr.Textbox(lines=4, label="Enter your SMS message"),
outputs=gr.Text(label="Prediction"),
title="πŸ“¬ Improved SMS Spam Detector",
description="Detects spam in SMS messages using Logistic Regression with TF-IDF bi-grams. Now with higher accuracy!"
)
if __name__ == "__main__":
iface.launch(share=False)