Spaces:
Runtime error
Runtime error
File size: 1,058 Bytes
73a393b 359ba9b 73a393b 9b36b48 359ba9b d2faca8 73a393b 9b36b48 73a393b 9b36b48 73a393b 9b36b48 73a393b 9b36b48 73a393b 9b36b48 73a393b 359ba9b c1a9c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import pipeline
import pandas as pd
# Load dataset from Hugging Face Hub
dataset_path = "hf://datasets/ucirvine/sms_spam/plain_text/train-00000-of-00001.parquet"
df = pd.read_parquet(dataset_path)
# Load a spam classification model
classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection")
def spam_detector(text):
"""Detect if a message is spam or not."""
result = classifier(text)
label = result[0]['label'].lower()
return "Spam" if label == "spam" else "Not Spam"
# Create Gradio UI with enhanced styling
app = gr.Interface(
fn=spam_detector,
inputs=gr.Textbox(label="Enter a message", placeholder="Type your message here..."),
outputs=gr.Textbox(label="Prediction"),
title="AI-Powered Spam Detector",
description="Enter a message to check if it's spam or not, using a fine-tuned BERT model.",
theme="huggingface"
)
# Run the app
if __name__ == "__main__":
print("Loaded dataset preview:")
print(df.head())
app.launch |