import streamlit as st from layout_extractor import convert_pdf_to_images, analyze_layout, extract_text_from_blocks, extract_key_values from processor import load_images, analyze_layout, extract_text_from_blocks, rule_based_kv_extraction import json st.set_page_config(page_title="Document AI", layout="wide") st.title("🧠 AI-Driven Document Layout & Info Extractor") uploaded_file = st.file_uploader("Upload a PDF or Image", type=["pdf", "png", "jpg", "jpeg"], key="upload1") if uploaded_file: images = load_images(uploaded_file) for i, image in enumerate(images): st.subheader(f"Page {i+1}") st.image(image, use_column_width=True) with st.spinner("Analyzing layout..."): layout = analyze_layout(image) blocks = extract_text_from_blocks(image, layout) kv_data = rule_based_kv_extraction(blocks) st.success("Done! Here's what we found:") st.json(kv_data) st.subheader("✏️ Edit Extracted Fields") edited_data = {} for key, value in kv_data.items(): edited_data[key] = st.text_input(f"{key}", value) st.download_button("⬇️ Download JSON", data=json.dumps(edited_data, indent=2), file_name="extracted_data.json", mime="application/json") with st.expander("🔍 All Detected Segments"): for b in blocks: st.markdown(f"**{b['type']}**: {b['text'][:150]}...") st.title("📄 AI-Driven Document Layout Analyzer") uploaded_file = st.file_uploader("Upload a PDF or Image", type=["pdf", "png", "jpg", "jpeg"], key="upload1") if uploaded_file: if uploaded_file.name.endswith(".pdf"): images = convert_pdf_to_images(uploaded_file) else: from PIL import Image images = [Image.open(uploaded_file)] for i, image in enumerate(images): st.image(image, caption=f"Page {i+1}", use_column_width=True) layout = analyze_layout(image) blocks = extract_text_from_blocks(image, layout) key_values = extract_key_values(blocks) st.subheader("Extracted Key Data") st.json(key_values) st.subheader("All Segments") for block in blocks: st.markdown(f"**{block['type']}**: {block['text'][:200]}...") st.download_button("Download JSON", data=json.dumps(key_values, indent=2), file_name="extracted_data.json")