Spaces:
Sleeping
Sleeping
Commit
·
79fc11d
1
Parent(s):
a36f637
Update
Browse files- app.py +61 -2
- layout_extractor.py +41 -0
- processor.py +45 -0
- requirements.txt +8 -0
app.py
CHANGED
@@ -1,2 +1,61 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from layout_extractor import convert_pdf_to_images, analyze_layout, extract_text_from_blocks, extract_key_values
|
3 |
+
from processor import load_images, analyze_layout, extract_text_from_blocks, rule_based_kv_extraction
|
4 |
+
import json
|
5 |
+
|
6 |
+
st.set_page_config(page_title="Document AI", layout="wide")
|
7 |
+
st.title("🧠 AI-Driven Document Layout & Info Extractor")
|
8 |
+
|
9 |
+
uploaded_file = st.file_uploader("Upload a PDF or Image", type=["pdf", "png", "jpg", "jpeg"])
|
10 |
+
|
11 |
+
if uploaded_file:
|
12 |
+
images = load_images(uploaded_file)
|
13 |
+
for i, image in enumerate(images):
|
14 |
+
st.subheader(f"Page {i+1}")
|
15 |
+
st.image(image, use_column_width=True)
|
16 |
+
|
17 |
+
with st.spinner("Analyzing layout..."):
|
18 |
+
layout = analyze_layout(image)
|
19 |
+
blocks = extract_text_from_blocks(image, layout)
|
20 |
+
kv_data = rule_based_kv_extraction(blocks)
|
21 |
+
|
22 |
+
st.success("Done! Here's what we found:")
|
23 |
+
st.json(kv_data)
|
24 |
+
|
25 |
+
st.subheader("✏️ Edit Extracted Fields")
|
26 |
+
edited_data = {}
|
27 |
+
for key, value in kv_data.items():
|
28 |
+
edited_data[key] = st.text_input(f"{key}", value)
|
29 |
+
|
30 |
+
st.download_button("⬇️ Download JSON", data=json.dumps(edited_data, indent=2),
|
31 |
+
file_name="extracted_data.json", mime="application/json")
|
32 |
+
|
33 |
+
with st.expander("🔍 All Detected Segments"):
|
34 |
+
for b in blocks:
|
35 |
+
st.markdown(f"**{b['type']}**: {b['text'][:150]}...")
|
36 |
+
|
37 |
+
st.title("📄 AI-Driven Document Layout Analyzer")
|
38 |
+
|
39 |
+
uploaded_file = st.file_uploader("Upload a PDF or Image", type=["pdf", "png", "jpg", "jpeg"])
|
40 |
+
|
41 |
+
if uploaded_file:
|
42 |
+
if uploaded_file.name.endswith(".pdf"):
|
43 |
+
images = convert_pdf_to_images(uploaded_file)
|
44 |
+
else:
|
45 |
+
from PIL import Image
|
46 |
+
images = [Image.open(uploaded_file)]
|
47 |
+
|
48 |
+
for i, image in enumerate(images):
|
49 |
+
st.image(image, caption=f"Page {i+1}", use_column_width=True)
|
50 |
+
layout = analyze_layout(image)
|
51 |
+
blocks = extract_text_from_blocks(image, layout)
|
52 |
+
key_values = extract_key_values(blocks)
|
53 |
+
|
54 |
+
st.subheader("Extracted Key Data")
|
55 |
+
st.json(key_values)
|
56 |
+
|
57 |
+
st.subheader("All Segments")
|
58 |
+
for block in blocks:
|
59 |
+
st.markdown(f"**{block['type']}**: {block['text'][:200]}...")
|
60 |
+
|
61 |
+
st.download_button("Download JSON", data=json.dumps(key_values, indent=2), file_name="extracted_data.json")
|
layout_extractor.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import layoutparser as lp
|
2 |
+
import pytesseract
|
3 |
+
import json
|
4 |
+
from pdf2image import convert_from_path
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
def convert_pdf_to_images(pdf_path):
|
8 |
+
return convert_from_path(pdf_path)
|
9 |
+
|
10 |
+
def analyze_layout(image):
|
11 |
+
model = lp.Detectron2LayoutModel(
|
12 |
+
config_path='lp://PubLayNet/faster_rcnn_R_50_FPN_3x/config',
|
13 |
+
extra_config=["MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.8],
|
14 |
+
label_map={0: "Text", 1: "Title", 2: "List", 3: "Table", 4: "Figure"}
|
15 |
+
)
|
16 |
+
layout = model.detect(image)
|
17 |
+
return layout
|
18 |
+
|
19 |
+
def extract_text_from_blocks(image, layout):
|
20 |
+
blocks = []
|
21 |
+
for block in layout:
|
22 |
+
segment_image = block.crop_image(image)
|
23 |
+
text = pytesseract.image_to_string(segment_image)
|
24 |
+
blocks.append({
|
25 |
+
"type": block.type,
|
26 |
+
"text": text.strip(),
|
27 |
+
"coordinates": block.coordinates
|
28 |
+
})
|
29 |
+
return blocks
|
30 |
+
|
31 |
+
def extract_key_values(blocks):
|
32 |
+
data = {}
|
33 |
+
for block in blocks:
|
34 |
+
text = block["text"]
|
35 |
+
if "invoice" in text.lower():
|
36 |
+
data["invoice_number"] = text
|
37 |
+
elif "total" in text.lower():
|
38 |
+
data["total_amount"] = text
|
39 |
+
elif "customer" in text.lower():
|
40 |
+
data["customer_name"] = text
|
41 |
+
return data
|
processor.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import layoutparser as lp
|
2 |
+
import pytesseract
|
3 |
+
from pdf2image import convert_from_path
|
4 |
+
from PIL import Image
|
5 |
+
import json
|
6 |
+
|
7 |
+
model = lp.Detectron2LayoutModel(
|
8 |
+
config_path="lp://PubLayNet/faster_rcnn_R_50_FPN_3x/config",
|
9 |
+
extra_config=["MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.8],
|
10 |
+
label_map={0: "Text", 1: "Title", 2: "List", 3: "Table", 4: "Figure"},
|
11 |
+
)
|
12 |
+
|
13 |
+
def load_images(uploaded_file):
|
14 |
+
if uploaded_file.name.endswith(".pdf"):
|
15 |
+
return convert_from_path(uploaded_file)
|
16 |
+
else:
|
17 |
+
return [Image.open(uploaded_file)]
|
18 |
+
|
19 |
+
def analyze_layout(image):
|
20 |
+
layout = model.detect(image)
|
21 |
+
return layout
|
22 |
+
|
23 |
+
def extract_text_from_blocks(image, layout):
|
24 |
+
blocks = []
|
25 |
+
for block in layout:
|
26 |
+
cropped = block.crop_image(image)
|
27 |
+
text = pytesseract.image_to_string(cropped)
|
28 |
+
blocks.append({
|
29 |
+
"type": block.type,
|
30 |
+
"text": text.strip(),
|
31 |
+
"coords": block.coordinates
|
32 |
+
})
|
33 |
+
return blocks
|
34 |
+
|
35 |
+
def rule_based_kv_extraction(blocks):
|
36 |
+
data = {}
|
37 |
+
for b in blocks:
|
38 |
+
t = b["text"].lower()
|
39 |
+
if "invoice" in t and "number" in t:
|
40 |
+
data["Invoice Number"] = b["text"]
|
41 |
+
elif "total" in t:
|
42 |
+
data["Total Amount"] = b["text"]
|
43 |
+
elif "customer" in t:
|
44 |
+
data["Customer Name"] = b["text"]
|
45 |
+
return data
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
layoutparser
|
3 |
+
pdf2image
|
4 |
+
pytesseract
|
5 |
+
transformers
|
6 |
+
torch
|
7 |
+
Pillow
|
8 |
+
opencv-python
|