import os import torch import torch.nn as nn from torch.utils.data import DataLoader, random_split from torchvision.datasets import ImageFolder from torchvision import transforms from models.cnn import CNNModel from utils.transforms import get_transforms def train_model(data_dir='data/intel/seg_train', epochs=10, batch_size=32, save_path='saved_models/cnn_model.pth'): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load dataset with ImageFolder (expects folder structure: class subfolders) full_dataset = ImageFolder(root=data_dir, transform=get_transforms(train=True)) class_names = full_dataset.classes print(f"Classes: {class_names}") # Split dataset 80% train, 20% val train_size = int(0.8 * len(full_dataset)) val_size = len(full_dataset) - train_size train_ds, val_ds = random_split(full_dataset, [train_size, val_size]) # Update val transforms (no augmentation) val_ds.dataset.transform = get_transforms(train=False) train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_ds, batch_size=batch_size) model = CNNModel(num_classes=len(class_names)).to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(epochs): model.train() total_loss = 0 total_correct = 0 for images, labels in train_loader: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() total_loss += loss.item() * images.size(0) total_correct += (outputs.argmax(1) == labels).sum().item() train_loss = total_loss / len(train_loader.dataset) train_acc = total_correct / len(train_loader.dataset) # Validation model.eval() val_loss = 0 val_correct = 0 with torch.no_grad(): for images, labels in val_loader: images, labels = images.to(device), labels.to(device) outputs = model(images) loss = criterion(outputs, labels) val_loss += loss.item() * images.size(0) val_correct += (outputs.argmax(1) == labels).sum().item() val_loss /= len(val_loader.dataset) val_acc = val_correct / len(val_loader.dataset) print(f"Epoch {epoch+1}/{epochs} — Train loss: {train_loss:.4f}, Train acc: {train_acc:.4f}, Val loss: {val_loss:.4f}, Val acc: {val_acc:.4f}") os.makedirs(os.path.dirname(save_path), exist_ok=True) torch.save({ 'model_state_dict': model.state_dict(), 'class_names': class_names }, save_path) print(f"Model saved to {save_path}") if __name__ == "__main__": train_model()