|
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.data import DataLoader, random_split
|
|
from torchvision.datasets import ImageFolder
|
|
from torchvision import transforms
|
|
from models.cnn import CNNModel
|
|
from utils.transforms import get_transforms
|
|
|
|
def train_model(data_dir='data/intel/seg_train', epochs=10, batch_size=32, save_path='saved_models/cnn_model.pth'):
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
full_dataset = ImageFolder(root=data_dir, transform=get_transforms(train=True))
|
|
class_names = full_dataset.classes
|
|
print(f"Classes: {class_names}")
|
|
|
|
|
|
train_size = int(0.8 * len(full_dataset))
|
|
val_size = len(full_dataset) - train_size
|
|
train_ds, val_ds = random_split(full_dataset, [train_size, val_size])
|
|
|
|
|
|
val_ds.dataset.transform = get_transforms(train=False)
|
|
|
|
train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
|
|
val_loader = DataLoader(val_ds, batch_size=batch_size)
|
|
|
|
model = CNNModel(num_classes=len(class_names)).to(device)
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
|
|
|
for epoch in range(epochs):
|
|
model.train()
|
|
total_loss = 0
|
|
total_correct = 0
|
|
|
|
for images, labels in train_loader:
|
|
images, labels = images.to(device), labels.to(device)
|
|
optimizer.zero_grad()
|
|
outputs = model(images)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
total_loss += loss.item() * images.size(0)
|
|
total_correct += (outputs.argmax(1) == labels).sum().item()
|
|
|
|
train_loss = total_loss / len(train_loader.dataset)
|
|
train_acc = total_correct / len(train_loader.dataset)
|
|
|
|
|
|
model.eval()
|
|
val_loss = 0
|
|
val_correct = 0
|
|
with torch.no_grad():
|
|
for images, labels in val_loader:
|
|
images, labels = images.to(device), labels.to(device)
|
|
outputs = model(images)
|
|
loss = criterion(outputs, labels)
|
|
val_loss += loss.item() * images.size(0)
|
|
val_correct += (outputs.argmax(1) == labels).sum().item()
|
|
|
|
val_loss /= len(val_loader.dataset)
|
|
val_acc = val_correct / len(val_loader.dataset)
|
|
|
|
print(f"Epoch {epoch+1}/{epochs} β Train loss: {train_loss:.4f}, Train acc: {train_acc:.4f}, Val loss: {val_loss:.4f}, Val acc: {val_acc:.4f}")
|
|
|
|
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
|
torch.save({
|
|
'model_state_dict': model.state_dict(),
|
|
'class_names': class_names
|
|
}, save_path)
|
|
print(f"Model saved to {save_path}")
|
|
|
|
if __name__ == "__main__":
|
|
train_model()
|
|
|