|
import streamlit as st |
|
import os |
|
from PIL import Image |
|
import torch |
|
from torchvision import transforms |
|
from models.cnn import CNNModel |
|
from utils.transforms import get_transforms |
|
|
|
os.environ["STREAMLIT_ROOT"] = "/tmp/.streamlit" |
|
|
|
@st.cache_resource |
|
def load_model(model_path='saved_models/cnn_model.pth'): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
checkpoint = torch.load(model_path, map_location=device) |
|
class_names = checkpoint['class_names'] |
|
model = CNNModel(num_classes=len(class_names)) |
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
model.to(device) |
|
model.eval() |
|
return model, class_names, device |
|
|
|
st.title("๐ธ Intel Image Classification") |
|
st.write("Upload an image to classify it into one of the image categories: buildings, forest, glacier, mountain, sea, or street.") |
|
|
|
model, class_names, device = load_model() |
|
|
|
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
|
|
if uploaded_file: |
|
image = Image.open(uploaded_file).convert("RGB") |
|
st.image(image, caption="Uploaded Image", use_container_width=True) |
|
|
|
transform = get_transforms(train=False) |
|
image_tensor = transform(image).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
output = model(image_tensor) |
|
predicted_idx = torch.argmax(output, 1).item() |
|
predicted_class = class_names[predicted_idx] |
|
|
|
st.success(f"Predicted class: {predicted_class}") |
|
|