Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,28 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
from diffusers.utils import export_to_video
|
4 |
-
import streamlit as st
|
5 |
-
from diffusers import UNet2DConditionModel, TextEncoder, VQModel
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
vae_model_name = "vae/diffusion_pytorch_model.bin"
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
prompt = st.text_input("Enter your text prompt:", "Spiderman is surfing")
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
torch_dtype=torch.float16,
|
30 |
-
variant="fp16",
|
31 |
-
device="cpu") # Force CPU usage
|
32 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
33 |
-
pipe.enable_model_cpu_offload() # Assuming 'accelerate' is updated
|
34 |
-
|
35 |
-
video_frames = pipe(prompt, num_inference_steps=25).frames
|
36 |
-
video_path = export_to_video(video_frames)
|
37 |
-
|
38 |
-
# Display the video in the Streamlit app
|
39 |
-
st.video(video_path)
|
|
|
1 |
+
import transformers
|
2 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load tokenizer and model
|
5 |
+
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
6 |
+
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
|
|
7 |
|
8 |
+
# Define a function to preprocess user input
|
9 |
+
def preprocess_input(text):
|
10 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
11 |
+
return encoded_input
|
|
|
12 |
|
13 |
+
# Define a function to generate response based on user input
|
14 |
+
def generate_response(user_input):
|
15 |
+
encoded_input = preprocess_input(user_input)
|
16 |
+
outputs = model(**encoded_input)
|
17 |
+
# Extract relevant information from model outputs (e.g., predicted class)
|
18 |
+
# Based on the extracted information, formulate a response using predefined responses or logic
|
19 |
+
response = "I'm still under development, but I understand you said: {}".format(user_input)
|
20 |
+
return response
|
21 |
|
22 |
+
# Start the chat loop
|
23 |
+
while True:
|
24 |
+
user_input = input("You: ")
|
25 |
+
if user_input == "quit":
|
26 |
+
break
|
27 |
+
bot_response = generate_response(user_input)
|
28 |
+
print("Bot:", bot_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|