import gradio as gr import random import time from transformers import AutoModelForCausalLM, AutoTokenizer # Load Vicuna 7B model and tokenizer model_name = "lmsys/vicuna-7b-v1.3" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def respond_vicuna(message, chat_history, vicuna_chatbot): input_ids = tokenizer.encode(message, return_tensors="pt") output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) bot_message = tokenizer.decode(output[0], skip_special_tokens=True) chat_history.append((message, bot_message)) time.sleep(2) return "", chat_history with gr.Blocks() as demo: gr.Markdown("# LLM Evaluator With Linguistic Scrutiny") with gr.Tab("POS"): gr.Markdown("Strategy 1 QA") with gr.Row(): vicuna_chatbot1 = gr.Chatbot(label="vicuna-7b", live=True) llama_chatbot1 = gr.Chatbot(label="llama-7b", live=False) gpt_chatbot1 = gr.Chatbot(label="gpt-3.5", live=False) gr.Markdown("Strategy 2 Instruction") with gr.Row(): vicuna_chatbot2 = gr.Chatbot(label="vicuna-7b", live=True) llama_chatbot2 = gr.Chatbot(label="llama-7b", live=False) gpt_chatbot2 = gr.Chatbot(label="gpt-3.5", live=False) gr.Markdown("Strategy 3 Structured Prompting") with gr.Row(): vicuna_chatbot3 = gr.Chatbot(label="vicuna-7b", live=True) llama_chatbot3 = gr.Chatbot(label="llama-7b", live=False) gpt_chatbot3 = gr.Chatbot(label="gpt-3.5", live=False) with gr.Row(): prompt = gr.Textbox(show_label=False, placeholder="Enter prompt") send_button_POS = gr.Button("Send", scale=0) clear = gr.ClearButton([prompt, vicuna_chatbot1]) with gr.Tab("Chunk"): gr.Markdown("Strategy 1 QA") with gr.Row(): vicuna_chatbot1_chunk = gr.Chatbot(label="vicuna-7b", live=True) llama_chatbot1_chunk = gr.Chatbot(label="llama-7b", live=False) gpt_chatbot1_chunk = gr.Chatbot(label="gpt-3.5", live=False) gr.Markdown("Strategy 2 Instruction") with gr.Row(): vicuna_chatbot2_chunk = gr.Chatbot(label="vicuna-7b", live=True) llama_chatbot2_chunk = gr.Chatbot(label="llama-7b", live=False) gpt_chatbot2_chunk = gr.Chatbot(label="gpt-3.5", live=False) gr.Markdown("Strategy 3 Structured Prompting") with gr.Row(): vicuna_chatbot3_chunk = gr.Chatbot(label="vicuna-7b", live=True) llama_chatbot3_chunk = gr.Chatbot(label="llama-7b", live=False) gpt_chatbot3_chunk = gr.Chatbot(label="gpt-3.5", live=False) with gr.Row(): prompt_chunk = gr.Textbox(show_label=False, placeholder="Enter prompt") send_button_Chunk = gr.Button("Send", scale=0) clear = gr.ClearButton([prompt_chunk, vicuna_chatbot1_chunk]) def respond(message, chat_history): input_ids = tokenizer.encode(message, return_tensors="pt") output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) bot_message = tokenizer.decode(output[0], skip_special_tokens=True) chat_history.append((message, bot_message)) time.sleep(2) return "", chat_history # Replace the old respond function with the new general function for Vicuna prompt.submit(lambda message, chat_history: respond_vicuna(message, chat_history, vicuna_chatbot1), [prompt, vicuna_chatbot1, vicuna_chatbot1_chunk]) demo.launch()