Spaces:
Runtime error
Runtime error
Commit
·
acb52cd
1
Parent(s):
469b565
removed unnecesary files
Browse files- conll_1k_ling.csv +0 -0
- placeholder.py +0 -175
- run_llm2.py +0 -147
- sample_uniform_1k_2.txt +0 -1000
- test3.py +0 -30
conll_1k_ling.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
placeholder.py
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import json
|
4 |
-
import time
|
5 |
-
import openai
|
6 |
-
import pickle
|
7 |
-
import argparse
|
8 |
-
import requests
|
9 |
-
from tqdm import tqdm
|
10 |
-
import torch
|
11 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer
|
12 |
-
|
13 |
-
from fastchat.model import load_model, get_conversation_template, add_model_args
|
14 |
-
|
15 |
-
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
16 |
-
|
17 |
-
import gradio as gr
|
18 |
-
from transformers import pipeline
|
19 |
-
|
20 |
-
demo = gr.Blocks()
|
21 |
-
|
22 |
-
uni_tags = list(_UNIVERSAL_TAGS)
|
23 |
-
uni_tags[-1] = 'PUNC'
|
24 |
-
|
25 |
-
bio_tags = ['B', 'I', 'O']
|
26 |
-
chunk_tags = ['ADJP', 'ADVP', 'CONJP', 'INTJ', 'LST', 'NP', 'O', 'PP', 'PRT', 'SBAR', 'UCP', 'VP']
|
27 |
-
|
28 |
-
syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "''", 'SINV', 'PRN', 'QP', 'WHNP', 'RB', 'FRAG',
|
29 |
-
'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
|
30 |
-
'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']
|
31 |
-
|
32 |
-
openai.api_key = " "
|
33 |
-
|
34 |
-
# determinant vs. determiner
|
35 |
-
# https://wikidiff.com/determiner/determinant
|
36 |
-
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
|
37 |
-
'Determiner',
|
38 |
-
'Noun Phrase','Verb Phrase','Adjective Phrase','Adverb Phrase','Preposition Phrase','Conjunction Phrase','Coordinate Phrase','Quantitave Phrase','Complex Nominal',
|
39 |
-
'Clause','Dependent Clause','Fragment Clause','T-unit','Complex T-unit',# 'Fragment T-unit',
|
40 |
-
][7:]
|
41 |
-
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT'][7:]
|
42 |
-
|
43 |
-
|
44 |
-
ents_prompt_uni_tags = ['Verb', 'Noun', 'Pronoun', 'Adjective', 'Adverb', 'Preposition and Postposition', 'Coordinating Conjunction',
|
45 |
-
'Determiner', 'Cardinal Number', 'Particles or other function words',
|
46 |
-
'Words that cannot be assigned a POS tag', 'Punctuation']
|
47 |
-
|
48 |
-
ents = uni_tags + ents
|
49 |
-
ents_prompt = ents_prompt_uni_tags + ents_prompt
|
50 |
-
|
51 |
-
for i, j in zip(ents, ents_prompt):
|
52 |
-
print(i, j)
|
53 |
-
|
54 |
-
model_mapping = {
|
55 |
-
'gpt3.5': 'gpt2',
|
56 |
-
#'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
57 |
-
#'llama-7b': './llama/hf/7B',
|
58 |
-
}
|
59 |
-
|
60 |
-
with open('sample_uniform_1k_2.txt', 'r') as f:
|
61 |
-
selected_idx = f.readlines()
|
62 |
-
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
63 |
-
|
64 |
-
ptb = []
|
65 |
-
with open('ptb.jsonl', 'r') as f:
|
66 |
-
for l in f:
|
67 |
-
ptb.append(json.loads(l))
|
68 |
-
|
69 |
-
|
70 |
-
## Prompt 1
|
71 |
-
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
|
72 |
-
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
|
73 |
-
|
74 |
-
## Prompt 2
|
75 |
-
prompt2_pos = '''Please pos tag the following sentence using Universal POS tag set without generating any additional text: {}'''
|
76 |
-
prompt2_chunk = '''Please do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating any addtional text: {}'''
|
77 |
-
prompt2_parse = '''Generate textual representation of the constituency parse tree of the following sentence using Penn TreeBank tag set without outputing any additional text: {}'''
|
78 |
-
|
79 |
-
prompt2_chunk = '''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {}'''
|
80 |
-
|
81 |
-
## Prompt 3
|
82 |
-
with open('demonstration_3_42_pos.txt', 'r') as f:
|
83 |
-
demon_pos = f.read()
|
84 |
-
with open('demonstration_3_42_chunk.txt', 'r') as f:
|
85 |
-
demon_chunk = f.read()
|
86 |
-
with open('demonstration_3_42_parse.txt', 'r') as f:
|
87 |
-
demon_parse = f.read()
|
88 |
-
|
89 |
-
# Your existing code
|
90 |
-
theme = gr.themes.Soft()
|
91 |
-
|
92 |
-
# issue get request for gpt 3.5
|
93 |
-
gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
|
94 |
-
#vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
|
95 |
-
#llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
|
96 |
-
|
97 |
-
# Dropdown options for model and task
|
98 |
-
model_options = list(model_mapping.keys())
|
99 |
-
task_options = ['POS', 'Chunking'] # remove parsing
|
100 |
-
|
101 |
-
|
102 |
-
# Function to process text based on model and task
|
103 |
-
def process_text(tab, text):
|
104 |
-
if tab == 'POS Tab':
|
105 |
-
strategy1_format = template_all.format(text)
|
106 |
-
strategy2_format = prompt2_pos.format(text)
|
107 |
-
strategy3_format = demon_pos
|
108 |
-
|
109 |
-
vicuna_result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
110 |
-
vicuna_result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
111 |
-
vicuna_result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
112 |
-
|
113 |
-
return (vicuna_result1, vicuna_result2, vicuna_result3)
|
114 |
-
elif tab == 'Chunk Tab':
|
115 |
-
strategy1_format = template_all.format(text)
|
116 |
-
strategy2_format = prompt2_chunk.format(text)
|
117 |
-
strategy3_format = demon_chunk
|
118 |
-
|
119 |
-
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
120 |
-
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
121 |
-
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
122 |
-
return (result1, result2, result3)
|
123 |
-
|
124 |
-
# Gradio interface
|
125 |
-
with demo:
|
126 |
-
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
|
127 |
-
|
128 |
-
with gr.Tabs():
|
129 |
-
with gr.TabItem("POS", id="POS Tab"):
|
130 |
-
with gr.Row():
|
131 |
-
gr.Markdown("<center>Vicuna 7b</center>")
|
132 |
-
gr.Markdown("<center> LLaMA-7b </center>")
|
133 |
-
gr.Markdown("<center> GPT 3.5 </center>")
|
134 |
-
with gr.Row():
|
135 |
-
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
|
136 |
-
model2_S1_output = gr.Textbox(label=".")
|
137 |
-
model3_S1_output = gr.Textbox(label=".")
|
138 |
-
with gr.Row():
|
139 |
-
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
|
140 |
-
model2_S2_output = gr.Textbox(label=".")
|
141 |
-
model3_S2_output = gr.Textbox(label=".")
|
142 |
-
with gr.Row():
|
143 |
-
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
|
144 |
-
model2_S3_output = gr.Textbox(label=".")
|
145 |
-
model3_S3_output = gr.Textbox(label=".")
|
146 |
-
with gr.Row():
|
147 |
-
prompt_POS = gr.Textbox(show_label=False, placeholder="Enter prompt")
|
148 |
-
send_button_POS = gr.Button("Send", scale=0)
|
149 |
-
|
150 |
-
with gr.TabItem("Chunking", id="Chunk Tab"):
|
151 |
-
with gr.Row():
|
152 |
-
gr.Markdown("<center>Vicuna 7b</center>")
|
153 |
-
gr.Markdown("<center> LLaMA-7b </center>")
|
154 |
-
gr.Markdown("<center> GPT 3.5 </center>")
|
155 |
-
with gr.Row():
|
156 |
-
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
|
157 |
-
model2_S1_output = gr.Textbox(label=".")
|
158 |
-
model3_S1_output = gr.Textbox(label=".")
|
159 |
-
with gr.Row():
|
160 |
-
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
|
161 |
-
model2_S2_output = gr.Textbox(label=".")
|
162 |
-
model3_S2_output = gr.Textbox(label=".")
|
163 |
-
with gr.Row():
|
164 |
-
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
|
165 |
-
model2_S3_output = gr.Textbox(label=".")
|
166 |
-
model3_S3_output = gr.Textbox(label=".")
|
167 |
-
with gr.Row():
|
168 |
-
prompt_Chunk = gr.Textbox(id="prompt_Chunk", show_label=False, placeholder="Enter prompt")
|
169 |
-
send_button_Chunk = gr.Button("Send", scale=0)
|
170 |
-
|
171 |
-
send_button_POS.click(process_text, inputs=["POS Tab", prompt_Chunk], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
|
172 |
-
send_button_Chunk.click(process_text, inputs=["Chunk Tab", prompt_POS], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
|
173 |
-
|
174 |
-
demo.launch()
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run_llm2.py
DELETED
@@ -1,147 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import json
|
4 |
-
import time
|
5 |
-
import openai
|
6 |
-
import pickle
|
7 |
-
import argparse
|
8 |
-
import requests
|
9 |
-
from tqdm import tqdm
|
10 |
-
import torch
|
11 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer
|
12 |
-
|
13 |
-
from fastchat.model import load_model, get_conversation_template, add_model_args
|
14 |
-
|
15 |
-
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
16 |
-
|
17 |
-
import gradio as gr
|
18 |
-
from transformers import pipeline
|
19 |
-
|
20 |
-
uni_tags = list(_UNIVERSAL_TAGS)
|
21 |
-
uni_tags[-1] = 'PUNC'
|
22 |
-
|
23 |
-
bio_tags = ['B', 'I', 'O']
|
24 |
-
chunk_tags = ['ADJP', 'ADVP', 'CONJP', 'INTJ', 'LST', 'NP', 'O', 'PP', 'PRT', 'SBAR', 'UCP', 'VP']
|
25 |
-
|
26 |
-
syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "''", 'SINV', 'PRN', 'QP', 'WHNP', 'RB', 'FRAG',
|
27 |
-
'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
|
28 |
-
'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']
|
29 |
-
|
30 |
-
openai.api_key = " "
|
31 |
-
|
32 |
-
# determinant vs. determiner
|
33 |
-
# https://wikidiff.com/determiner/determinant
|
34 |
-
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
|
35 |
-
'Determiner',
|
36 |
-
'Noun Phrase','Verb Phrase','Adjective Phrase','Adverb Phrase','Preposition Phrase','Conjunction Phrase','Coordinate Phrase','Quantitave Phrase','Complex Nominal',
|
37 |
-
'Clause','Dependent Clause','Fragment Clause','T-unit','Complex T-unit',# 'Fragment T-unit',
|
38 |
-
][7:]
|
39 |
-
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT'][7:]
|
40 |
-
|
41 |
-
|
42 |
-
ents_prompt_uni_tags = ['Verb', 'Noun', 'Pronoun', 'Adjective', 'Adverb', 'Preposition and Postposition', 'Coordinating Conjunction',
|
43 |
-
'Determiner', 'Cardinal Number', 'Particles or other function words',
|
44 |
-
'Words that cannot be assigned a POS tag', 'Punctuation']
|
45 |
-
|
46 |
-
ents = uni_tags + ents
|
47 |
-
ents_prompt = ents_prompt_uni_tags + ents_prompt
|
48 |
-
|
49 |
-
for i, j in zip(ents, ents_prompt):
|
50 |
-
print(i, j)
|
51 |
-
|
52 |
-
model_mapping = {
|
53 |
-
'gpt3.5': 'gpt2',
|
54 |
-
#'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
55 |
-
#'llama-7b': './llama/hf/7B',
|
56 |
-
}
|
57 |
-
|
58 |
-
with open('sample_uniform_1k_2.txt', 'r') as f:
|
59 |
-
selected_idx = f.readlines()
|
60 |
-
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
61 |
-
|
62 |
-
ptb = []
|
63 |
-
with open('ptb.jsonl', 'r') as f:
|
64 |
-
for l in f:
|
65 |
-
ptb.append(json.loads(l))
|
66 |
-
|
67 |
-
|
68 |
-
## Prompt 1
|
69 |
-
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
|
70 |
-
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
|
71 |
-
|
72 |
-
## Prompt 2
|
73 |
-
prompt2_pos = '''Please pos tag the following sentence using Universal POS tag set without generating any additional text: {}'''
|
74 |
-
prompt2_chunk = '''Please do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating any addtional text: {}'''
|
75 |
-
prompt2_parse = '''Generate textual representation of the constituency parse tree of the following sentence using Penn TreeBank tag set without outputing any additional text: {}'''
|
76 |
-
|
77 |
-
prompt2_chunk = '''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {}'''
|
78 |
-
|
79 |
-
## Prompt 3
|
80 |
-
with open('demonstration_3_42_pos.txt', 'r') as f:
|
81 |
-
demon_pos = f.read()
|
82 |
-
with open('demonstration_3_42_chunk.txt', 'r') as f:
|
83 |
-
demon_chunk = f.read()
|
84 |
-
with open('demonstration_3_42_parse.txt', 'r') as f:
|
85 |
-
demon_parse = f.read()
|
86 |
-
|
87 |
-
# Your existing code
|
88 |
-
theme = gr.themes.Soft()
|
89 |
-
|
90 |
-
# issue get request for gpt 3.5
|
91 |
-
gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
|
92 |
-
#vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
|
93 |
-
#llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
|
94 |
-
|
95 |
-
# Dropdown options for model and task
|
96 |
-
model_options = list(model_mapping.keys())
|
97 |
-
task_options = ['POS', 'Chunking'] # remove parsing
|
98 |
-
|
99 |
-
|
100 |
-
# Function to process text based on model and task
|
101 |
-
def process_text(model_name, task, text):
|
102 |
-
gid_list = selected_idx[0:20]
|
103 |
-
|
104 |
-
for gid in tqdm(gid_list, desc='Query'):
|
105 |
-
text = ptb[gid]['text']
|
106 |
-
|
107 |
-
if model_name == 'vicuna-7b':
|
108 |
-
if task == 'POS':
|
109 |
-
strategy1_format = template_all.format(text)
|
110 |
-
strategy2_format = prompt2_pos.format(text)
|
111 |
-
strategy3_format = demon_pos
|
112 |
-
|
113 |
-
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
114 |
-
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
115 |
-
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
116 |
-
return (result1, result2, result3)
|
117 |
-
elif task == 'Chunking':
|
118 |
-
strategy1_format = template_all.format(text)
|
119 |
-
strategy2_format = prompt2_chunk.format(text)
|
120 |
-
strategy3_format = demon_chunk
|
121 |
-
|
122 |
-
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
123 |
-
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
124 |
-
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
125 |
-
return (result1, result2, result3)
|
126 |
-
|
127 |
-
# Gradio interface
|
128 |
-
iface = gr.Interface(
|
129 |
-
fn=process_text,
|
130 |
-
inputs=[
|
131 |
-
gr.Dropdown(model_options, label="Select Model"),
|
132 |
-
gr.Dropdown(task_options, label="Select Task"),
|
133 |
-
gr.Textbox(label="Input Text", placeholder="Enter the text to process..."),
|
134 |
-
],
|
135 |
-
outputs=[
|
136 |
-
gr.Textbox(label="Strategy 1 QA Result"),
|
137 |
-
gr.Textbox(label="Strategy 2 Instruction Result"),
|
138 |
-
gr.Textbox(label="Strategy 3 Structured Prompting Result"),
|
139 |
-
],
|
140 |
-
title = "LLM Evaluator For Linguistic Scrutiny",
|
141 |
-
theme = theme,
|
142 |
-
live=False,
|
143 |
-
)
|
144 |
-
|
145 |
-
iface.launch()
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample_uniform_1k_2.txt
DELETED
@@ -1,1000 +0,0 @@
|
|
1 |
-
22
|
2 |
-
40
|
3 |
-
199
|
4 |
-
444
|
5 |
-
457
|
6 |
-
669
|
7 |
-
679
|
8 |
-
1215
|
9 |
-
1412
|
10 |
-
1423
|
11 |
-
1429
|
12 |
-
1460
|
13 |
-
1491
|
14 |
-
1647
|
15 |
-
1671
|
16 |
-
1740
|
17 |
-
1755
|
18 |
-
1779
|
19 |
-
1823
|
20 |
-
1878
|
21 |
-
2036
|
22 |
-
2145
|
23 |
-
2161
|
24 |
-
2185
|
25 |
-
2219
|
26 |
-
2243
|
27 |
-
2328
|
28 |
-
2352
|
29 |
-
2615
|
30 |
-
2657
|
31 |
-
2666
|
32 |
-
2713
|
33 |
-
2870
|
34 |
-
2884
|
35 |
-
2909
|
36 |
-
2915
|
37 |
-
2936
|
38 |
-
3005
|
39 |
-
3065
|
40 |
-
3095
|
41 |
-
3194
|
42 |
-
3251
|
43 |
-
3375
|
44 |
-
3404
|
45 |
-
3679
|
46 |
-
3864
|
47 |
-
3904
|
48 |
-
4016
|
49 |
-
4041
|
50 |
-
4045
|
51 |
-
4064
|
52 |
-
4068
|
53 |
-
4070
|
54 |
-
4072
|
55 |
-
4079
|
56 |
-
4090
|
57 |
-
4134
|
58 |
-
4425
|
59 |
-
4450
|
60 |
-
4455
|
61 |
-
4457
|
62 |
-
4464
|
63 |
-
4523
|
64 |
-
4524
|
65 |
-
4541
|
66 |
-
4550
|
67 |
-
4575
|
68 |
-
4614
|
69 |
-
4634
|
70 |
-
4715
|
71 |
-
5013
|
72 |
-
5015
|
73 |
-
5021
|
74 |
-
5029
|
75 |
-
5040
|
76 |
-
5057
|
77 |
-
5070
|
78 |
-
5121
|
79 |
-
5250
|
80 |
-
5257
|
81 |
-
5328
|
82 |
-
5338
|
83 |
-
5351
|
84 |
-
5415
|
85 |
-
5497
|
86 |
-
5501
|
87 |
-
5536
|
88 |
-
5576
|
89 |
-
5599
|
90 |
-
5617
|
91 |
-
5641
|
92 |
-
5683
|
93 |
-
5702
|
94 |
-
5709
|
95 |
-
5711
|
96 |
-
5716
|
97 |
-
5771
|
98 |
-
5877
|
99 |
-
5888
|
100 |
-
5899
|
101 |
-
5921
|
102 |
-
5945
|
103 |
-
5991
|
104 |
-
6059
|
105 |
-
6065
|
106 |
-
6066
|
107 |
-
6087
|
108 |
-
6096
|
109 |
-
6114
|
110 |
-
6256
|
111 |
-
6265
|
112 |
-
6330
|
113 |
-
6520
|
114 |
-
6633
|
115 |
-
6943
|
116 |
-
7051
|
117 |
-
7108
|
118 |
-
7526
|
119 |
-
7681
|
120 |
-
7748
|
121 |
-
7763
|
122 |
-
7768
|
123 |
-
7778
|
124 |
-
7878
|
125 |
-
7906
|
126 |
-
7936
|
127 |
-
7975
|
128 |
-
8035
|
129 |
-
8185
|
130 |
-
8431
|
131 |
-
8942
|
132 |
-
9070
|
133 |
-
9212
|
134 |
-
9584
|
135 |
-
9615
|
136 |
-
9626
|
137 |
-
9631
|
138 |
-
9709
|
139 |
-
9711
|
140 |
-
9722
|
141 |
-
9870
|
142 |
-
9874
|
143 |
-
9878
|
144 |
-
9942
|
145 |
-
9946
|
146 |
-
9947
|
147 |
-
9958
|
148 |
-
9973
|
149 |
-
9987
|
150 |
-
10017
|
151 |
-
10030
|
152 |
-
10244
|
153 |
-
10250
|
154 |
-
10284
|
155 |
-
10333
|
156 |
-
10438
|
157 |
-
10645
|
158 |
-
10647
|
159 |
-
10888
|
160 |
-
10995
|
161 |
-
11083
|
162 |
-
11220
|
163 |
-
11349
|
164 |
-
11416
|
165 |
-
11491
|
166 |
-
11498
|
167 |
-
11630
|
168 |
-
11874
|
169 |
-
11889
|
170 |
-
11972
|
171 |
-
12296
|
172 |
-
12369
|
173 |
-
12382
|
174 |
-
12504
|
175 |
-
12580
|
176 |
-
12606
|
177 |
-
12611
|
178 |
-
12623
|
179 |
-
12823
|
180 |
-
12884
|
181 |
-
13128
|
182 |
-
13145
|
183 |
-
13339
|
184 |
-
13358
|
185 |
-
13368
|
186 |
-
13689
|
187 |
-
13709
|
188 |
-
13839
|
189 |
-
14041
|
190 |
-
14042
|
191 |
-
14130
|
192 |
-
14475
|
193 |
-
14946
|
194 |
-
15614
|
195 |
-
15706
|
196 |
-
15863
|
197 |
-
16111
|
198 |
-
16219
|
199 |
-
16658
|
200 |
-
17367
|
201 |
-
17382
|
202 |
-
17388
|
203 |
-
17584
|
204 |
-
17705
|
205 |
-
17858
|
206 |
-
17996
|
207 |
-
18440
|
208 |
-
18839
|
209 |
-
19022
|
210 |
-
19324
|
211 |
-
19378
|
212 |
-
19459
|
213 |
-
19467
|
214 |
-
19475
|
215 |
-
19531
|
216 |
-
19543
|
217 |
-
19612
|
218 |
-
19633
|
219 |
-
19634
|
220 |
-
19640
|
221 |
-
19666
|
222 |
-
19701
|
223 |
-
19722
|
224 |
-
19780
|
225 |
-
19807
|
226 |
-
19836
|
227 |
-
19982
|
228 |
-
20425
|
229 |
-
20430
|
230 |
-
20433
|
231 |
-
20447
|
232 |
-
20448
|
233 |
-
20451
|
234 |
-
20577
|
235 |
-
20624
|
236 |
-
20661
|
237 |
-
20878
|
238 |
-
20930
|
239 |
-
21463
|
240 |
-
21487
|
241 |
-
21520
|
242 |
-
21533
|
243 |
-
21575
|
244 |
-
21593
|
245 |
-
21692
|
246 |
-
21811
|
247 |
-
21864
|
248 |
-
22191
|
249 |
-
22195
|
250 |
-
22209
|
251 |
-
22216
|
252 |
-
22447
|
253 |
-
22617
|
254 |
-
22700
|
255 |
-
22718
|
256 |
-
22720
|
257 |
-
22758
|
258 |
-
22948
|
259 |
-
23059
|
260 |
-
23357
|
261 |
-
23415
|
262 |
-
23460
|
263 |
-
23471
|
264 |
-
23479
|
265 |
-
23483
|
266 |
-
23498
|
267 |
-
23501
|
268 |
-
23506
|
269 |
-
23517
|
270 |
-
23524
|
271 |
-
23615
|
272 |
-
24121
|
273 |
-
24178
|
274 |
-
24241
|
275 |
-
25189
|
276 |
-
25444
|
277 |
-
25691
|
278 |
-
25970
|
279 |
-
26117
|
280 |
-
26379
|
281 |
-
26440
|
282 |
-
26531
|
283 |
-
27037
|
284 |
-
27873
|
285 |
-
28995
|
286 |
-
30674
|
287 |
-
30682
|
288 |
-
32767
|
289 |
-
33573
|
290 |
-
34496
|
291 |
-
35035
|
292 |
-
35128
|
293 |
-
35214
|
294 |
-
36123
|
295 |
-
37616
|
296 |
-
37885
|
297 |
-
37886
|
298 |
-
38014
|
299 |
-
38348
|
300 |
-
38972
|
301 |
-
39029
|
302 |
-
40054
|
303 |
-
42861
|
304 |
-
43518
|
305 |
-
43727
|
306 |
-
44175
|
307 |
-
44388
|
308 |
-
45668
|
309 |
-
46366
|
310 |
-
46700
|
311 |
-
47791
|
312 |
-
49203
|
313 |
-
49378
|
314 |
-
50205
|
315 |
-
50859
|
316 |
-
51993
|
317 |
-
52118
|
318 |
-
52276
|
319 |
-
52443
|
320 |
-
52461
|
321 |
-
52539
|
322 |
-
52571
|
323 |
-
53484
|
324 |
-
54161
|
325 |
-
55357
|
326 |
-
55376
|
327 |
-
55585
|
328 |
-
58690
|
329 |
-
58714
|
330 |
-
59806
|
331 |
-
60070
|
332 |
-
60217
|
333 |
-
61200
|
334 |
-
61839
|
335 |
-
63596
|
336 |
-
64306
|
337 |
-
64719
|
338 |
-
65841
|
339 |
-
66221
|
340 |
-
66620
|
341 |
-
66669
|
342 |
-
66865
|
343 |
-
67195
|
344 |
-
68639
|
345 |
-
68808
|
346 |
-
68959
|
347 |
-
69099
|
348 |
-
69215
|
349 |
-
69337
|
350 |
-
72196
|
351 |
-
72238
|
352 |
-
72802
|
353 |
-
73555
|
354 |
-
74922
|
355 |
-
75248
|
356 |
-
76084
|
357 |
-
76487
|
358 |
-
76817
|
359 |
-
76893
|
360 |
-
77930
|
361 |
-
79266
|
362 |
-
79520
|
363 |
-
80210
|
364 |
-
81184
|
365 |
-
81294
|
366 |
-
81644
|
367 |
-
82214
|
368 |
-
82518
|
369 |
-
82537
|
370 |
-
82604
|
371 |
-
83578
|
372 |
-
83794
|
373 |
-
83804
|
374 |
-
83883
|
375 |
-
84330
|
376 |
-
85286
|
377 |
-
85639
|
378 |
-
86281
|
379 |
-
86453
|
380 |
-
87624
|
381 |
-
87732
|
382 |
-
87804
|
383 |
-
87822
|
384 |
-
87933
|
385 |
-
88638
|
386 |
-
90076
|
387 |
-
90481
|
388 |
-
90665
|
389 |
-
90683
|
390 |
-
90945
|
391 |
-
91665
|
392 |
-
92617
|
393 |
-
93512
|
394 |
-
94615
|
395 |
-
94806
|
396 |
-
94813
|
397 |
-
96676
|
398 |
-
97060
|
399 |
-
97291
|
400 |
-
97582
|
401 |
-
98335
|
402 |
-
98557
|
403 |
-
98825
|
404 |
-
100249
|
405 |
-
100411
|
406 |
-
100434
|
407 |
-
100922
|
408 |
-
101125
|
409 |
-
101527
|
410 |
-
103116
|
411 |
-
104391
|
412 |
-
104793
|
413 |
-
105808
|
414 |
-
105975
|
415 |
-
106681
|
416 |
-
107229
|
417 |
-
107334
|
418 |
-
107552
|
419 |
-
107934
|
420 |
-
108060
|
421 |
-
108098
|
422 |
-
108106
|
423 |
-
110030
|
424 |
-
110065
|
425 |
-
110563
|
426 |
-
111079
|
427 |
-
111667
|
428 |
-
111671
|
429 |
-
111957
|
430 |
-
112351
|
431 |
-
112544
|
432 |
-
114246
|
433 |
-
114249
|
434 |
-
115279
|
435 |
-
115933
|
436 |
-
115938
|
437 |
-
116006
|
438 |
-
116122
|
439 |
-
117380
|
440 |
-
118649
|
441 |
-
118675
|
442 |
-
118864
|
443 |
-
119478
|
444 |
-
119561
|
445 |
-
119682
|
446 |
-
119808
|
447 |
-
120075
|
448 |
-
120176
|
449 |
-
120750
|
450 |
-
121706
|
451 |
-
122975
|
452 |
-
123612
|
453 |
-
124509
|
454 |
-
124814
|
455 |
-
125632
|
456 |
-
125889
|
457 |
-
125949
|
458 |
-
126100
|
459 |
-
126676
|
460 |
-
127339
|
461 |
-
127504
|
462 |
-
127655
|
463 |
-
127728
|
464 |
-
127753
|
465 |
-
127857
|
466 |
-
128152
|
467 |
-
128476
|
468 |
-
128738
|
469 |
-
129016
|
470 |
-
129211
|
471 |
-
129244
|
472 |
-
129469
|
473 |
-
130186
|
474 |
-
130221
|
475 |
-
130852
|
476 |
-
130991
|
477 |
-
131039
|
478 |
-
131466
|
479 |
-
131763
|
480 |
-
133157
|
481 |
-
133548
|
482 |
-
133661
|
483 |
-
134168
|
484 |
-
134206
|
485 |
-
134752
|
486 |
-
135454
|
487 |
-
137001
|
488 |
-
138509
|
489 |
-
138980
|
490 |
-
139058
|
491 |
-
139922
|
492 |
-
139967
|
493 |
-
140086
|
494 |
-
140103
|
495 |
-
140186
|
496 |
-
141180
|
497 |
-
141629
|
498 |
-
141664
|
499 |
-
142655
|
500 |
-
143450
|
501 |
-
143592
|
502 |
-
143709
|
503 |
-
144382
|
504 |
-
146718
|
505 |
-
148280
|
506 |
-
148723
|
507 |
-
151351
|
508 |
-
151759
|
509 |
-
151778
|
510 |
-
152285
|
511 |
-
152453
|
512 |
-
152585
|
513 |
-
152990
|
514 |
-
153834
|
515 |
-
153966
|
516 |
-
154283
|
517 |
-
154448
|
518 |
-
154788
|
519 |
-
155021
|
520 |
-
155296
|
521 |
-
156949
|
522 |
-
156954
|
523 |
-
157620
|
524 |
-
158390
|
525 |
-
158963
|
526 |
-
160769
|
527 |
-
161380
|
528 |
-
161660
|
529 |
-
162673
|
530 |
-
163005
|
531 |
-
163016
|
532 |
-
163596
|
533 |
-
164120
|
534 |
-
164152
|
535 |
-
164330
|
536 |
-
164925
|
537 |
-
166595
|
538 |
-
166660
|
539 |
-
166683
|
540 |
-
166768
|
541 |
-
168438
|
542 |
-
169072
|
543 |
-
169133
|
544 |
-
170444
|
545 |
-
171462
|
546 |
-
172071
|
547 |
-
172473
|
548 |
-
173397
|
549 |
-
173564
|
550 |
-
174306
|
551 |
-
174802
|
552 |
-
175695
|
553 |
-
175912
|
554 |
-
176612
|
555 |
-
176740
|
556 |
-
177250
|
557 |
-
177265
|
558 |
-
177696
|
559 |
-
177885
|
560 |
-
177903
|
561 |
-
178320
|
562 |
-
179224
|
563 |
-
179337
|
564 |
-
179437
|
565 |
-
179444
|
566 |
-
179481
|
567 |
-
179994
|
568 |
-
180430
|
569 |
-
180452
|
570 |
-
180709
|
571 |
-
181259
|
572 |
-
181270
|
573 |
-
181292
|
574 |
-
181421
|
575 |
-
181904
|
576 |
-
181910
|
577 |
-
181915
|
578 |
-
181925
|
579 |
-
182069
|
580 |
-
182260
|
581 |
-
182474
|
582 |
-
182518
|
583 |
-
183209
|
584 |
-
183462
|
585 |
-
184125
|
586 |
-
184260
|
587 |
-
184413
|
588 |
-
185253
|
589 |
-
186629
|
590 |
-
186898
|
591 |
-
188504
|
592 |
-
190084
|
593 |
-
190127
|
594 |
-
190328
|
595 |
-
190481
|
596 |
-
191207
|
597 |
-
191444
|
598 |
-
192882
|
599 |
-
193144
|
600 |
-
193519
|
601 |
-
193641
|
602 |
-
193671
|
603 |
-
193683
|
604 |
-
193772
|
605 |
-
194206
|
606 |
-
194249
|
607 |
-
194554
|
608 |
-
195315
|
609 |
-
195553
|
610 |
-
195858
|
611 |
-
196421
|
612 |
-
196853
|
613 |
-
197746
|
614 |
-
198738
|
615 |
-
198744
|
616 |
-
199692
|
617 |
-
199929
|
618 |
-
199976
|
619 |
-
200003
|
620 |
-
200223
|
621 |
-
200250
|
622 |
-
200828
|
623 |
-
201263
|
624 |
-
201276
|
625 |
-
201645
|
626 |
-
202167
|
627 |
-
202214
|
628 |
-
202741
|
629 |
-
203324
|
630 |
-
203419
|
631 |
-
203819
|
632 |
-
203844
|
633 |
-
203901
|
634 |
-
203975
|
635 |
-
204085
|
636 |
-
204116
|
637 |
-
204119
|
638 |
-
204429
|
639 |
-
204701
|
640 |
-
204797
|
641 |
-
205005
|
642 |
-
205831
|
643 |
-
205922
|
644 |
-
205974
|
645 |
-
206001
|
646 |
-
206545
|
647 |
-
206805
|
648 |
-
206842
|
649 |
-
206882
|
650 |
-
206922
|
651 |
-
207164
|
652 |
-
207174
|
653 |
-
207302
|
654 |
-
207424
|
655 |
-
207444
|
656 |
-
207829
|
657 |
-
207833
|
658 |
-
207847
|
659 |
-
208021
|
660 |
-
208149
|
661 |
-
208815
|
662 |
-
209067
|
663 |
-
209093
|
664 |
-
209274
|
665 |
-
209310
|
666 |
-
209508
|
667 |
-
209808
|
668 |
-
209899
|
669 |
-
209906
|
670 |
-
210013
|
671 |
-
210131
|
672 |
-
210146
|
673 |
-
210152
|
674 |
-
210341
|
675 |
-
210348
|
676 |
-
210351
|
677 |
-
210361
|
678 |
-
210629
|
679 |
-
210896
|
680 |
-
211021
|
681 |
-
211271
|
682 |
-
211363
|
683 |
-
211501
|
684 |
-
211517
|
685 |
-
211718
|
686 |
-
212002
|
687 |
-
212097
|
688 |
-
212120
|
689 |
-
212369
|
690 |
-
212458
|
691 |
-
212482
|
692 |
-
212503
|
693 |
-
212541
|
694 |
-
212596
|
695 |
-
212810
|
696 |
-
212881
|
697 |
-
213122
|
698 |
-
213338
|
699 |
-
213601
|
700 |
-
213738
|
701 |
-
213743
|
702 |
-
213861
|
703 |
-
213999
|
704 |
-
214063
|
705 |
-
214189
|
706 |
-
214252
|
707 |
-
214423
|
708 |
-
214623
|
709 |
-
214682
|
710 |
-
214720
|
711 |
-
214945
|
712 |
-
215080
|
713 |
-
215163
|
714 |
-
215306
|
715 |
-
215351
|
716 |
-
215370
|
717 |
-
215425
|
718 |
-
215516
|
719 |
-
215821
|
720 |
-
216035
|
721 |
-
216072
|
722 |
-
216340
|
723 |
-
216397
|
724 |
-
216485
|
725 |
-
216620
|
726 |
-
216864
|
727 |
-
217136
|
728 |
-
217183
|
729 |
-
217196
|
730 |
-
217240
|
731 |
-
217493
|
732 |
-
217687
|
733 |
-
217697
|
734 |
-
217718
|
735 |
-
218026
|
736 |
-
218191
|
737 |
-
218271
|
738 |
-
218341
|
739 |
-
218363
|
740 |
-
218563
|
741 |
-
218654
|
742 |
-
218830
|
743 |
-
218862
|
744 |
-
218879
|
745 |
-
219076
|
746 |
-
219241
|
747 |
-
219339
|
748 |
-
219369
|
749 |
-
219578
|
750 |
-
219724
|
751 |
-
219733
|
752 |
-
219770
|
753 |
-
219788
|
754 |
-
219870
|
755 |
-
219893
|
756 |
-
220572
|
757 |
-
220576
|
758 |
-
220596
|
759 |
-
220728
|
760 |
-
220956
|
761 |
-
221143
|
762 |
-
221203
|
763 |
-
222033
|
764 |
-
222043
|
765 |
-
222257
|
766 |
-
222320
|
767 |
-
222448
|
768 |
-
222906
|
769 |
-
223072
|
770 |
-
223109
|
771 |
-
223219
|
772 |
-
223526
|
773 |
-
223544
|
774 |
-
223605
|
775 |
-
223700
|
776 |
-
223755
|
777 |
-
223796
|
778 |
-
224043
|
779 |
-
224265
|
780 |
-
224268
|
781 |
-
224280
|
782 |
-
224304
|
783 |
-
224352
|
784 |
-
224454
|
785 |
-
224666
|
786 |
-
224709
|
787 |
-
224720
|
788 |
-
224741
|
789 |
-
224820
|
790 |
-
224962
|
791 |
-
225127
|
792 |
-
225265
|
793 |
-
225311
|
794 |
-
225363
|
795 |
-
225492
|
796 |
-
225536
|
797 |
-
225724
|
798 |
-
225750
|
799 |
-
225818
|
800 |
-
226026
|
801 |
-
226065
|
802 |
-
226124
|
803 |
-
226359
|
804 |
-
226570
|
805 |
-
226618
|
806 |
-
226930
|
807 |
-
227005
|
808 |
-
227108
|
809 |
-
227555
|
810 |
-
227779
|
811 |
-
227881
|
812 |
-
227892
|
813 |
-
228031
|
814 |
-
228267
|
815 |
-
228841
|
816 |
-
228981
|
817 |
-
229028
|
818 |
-
229114
|
819 |
-
229186
|
820 |
-
229393
|
821 |
-
229443
|
822 |
-
229478
|
823 |
-
229633
|
824 |
-
229722
|
825 |
-
229777
|
826 |
-
229812
|
827 |
-
230022
|
828 |
-
230214
|
829 |
-
230345
|
830 |
-
230351
|
831 |
-
230869
|
832 |
-
230888
|
833 |
-
230937
|
834 |
-
230987
|
835 |
-
231147
|
836 |
-
231352
|
837 |
-
231636
|
838 |
-
231820
|
839 |
-
231850
|
840 |
-
231852
|
841 |
-
232242
|
842 |
-
232543
|
843 |
-
232765
|
844 |
-
232921
|
845 |
-
232931
|
846 |
-
232977
|
847 |
-
232989
|
848 |
-
232990
|
849 |
-
233200
|
850 |
-
233478
|
851 |
-
233545
|
852 |
-
233762
|
853 |
-
233822
|
854 |
-
233881
|
855 |
-
233921
|
856 |
-
234026
|
857 |
-
234041
|
858 |
-
234061
|
859 |
-
234161
|
860 |
-
234333
|
861 |
-
234483
|
862 |
-
234640
|
863 |
-
234787
|
864 |
-
234826
|
865 |
-
235204
|
866 |
-
235214
|
867 |
-
235543
|
868 |
-
235785
|
869 |
-
235823
|
870 |
-
236025
|
871 |
-
236061
|
872 |
-
236070
|
873 |
-
236081
|
874 |
-
236102
|
875 |
-
236168
|
876 |
-
236252
|
877 |
-
236282
|
878 |
-
236406
|
879 |
-
236681
|
880 |
-
236810
|
881 |
-
236855
|
882 |
-
236919
|
883 |
-
237247
|
884 |
-
237476
|
885 |
-
237737
|
886 |
-
237850
|
887 |
-
237896
|
888 |
-
237939
|
889 |
-
237960
|
890 |
-
237961
|
891 |
-
237969
|
892 |
-
238043
|
893 |
-
238306
|
894 |
-
238393
|
895 |
-
238476
|
896 |
-
238790
|
897 |
-
238840
|
898 |
-
238878
|
899 |
-
239022
|
900 |
-
239061
|
901 |
-
239062
|
902 |
-
239217
|
903 |
-
239277
|
904 |
-
239282
|
905 |
-
239473
|
906 |
-
239666
|
907 |
-
240313
|
908 |
-
240505
|
909 |
-
240607
|
910 |
-
240617
|
911 |
-
240649
|
912 |
-
240703
|
913 |
-
240769
|
914 |
-
240791
|
915 |
-
240864
|
916 |
-
240911
|
917 |
-
241137
|
918 |
-
241288
|
919 |
-
241462
|
920 |
-
241610
|
921 |
-
241661
|
922 |
-
241825
|
923 |
-
242047
|
924 |
-
242066
|
925 |
-
242459
|
926 |
-
242499
|
927 |
-
242882
|
928 |
-
243138
|
929 |
-
243145
|
930 |
-
243168
|
931 |
-
243343
|
932 |
-
243382
|
933 |
-
243408
|
934 |
-
243574
|
935 |
-
243579
|
936 |
-
243587
|
937 |
-
243613
|
938 |
-
243810
|
939 |
-
243910
|
940 |
-
243974
|
941 |
-
244036
|
942 |
-
244047
|
943 |
-
244267
|
944 |
-
244308
|
945 |
-
244530
|
946 |
-
244666
|
947 |
-
244741
|
948 |
-
244793
|
949 |
-
244861
|
950 |
-
244865
|
951 |
-
245024
|
952 |
-
245067
|
953 |
-
245148
|
954 |
-
245157
|
955 |
-
245351
|
956 |
-
245458
|
957 |
-
245565
|
958 |
-
245926
|
959 |
-
246001
|
960 |
-
246390
|
961 |
-
246703
|
962 |
-
246732
|
963 |
-
246793
|
964 |
-
246805
|
965 |
-
247038
|
966 |
-
247132
|
967 |
-
247365
|
968 |
-
247431
|
969 |
-
247808
|
970 |
-
247911
|
971 |
-
247953
|
972 |
-
248261
|
973 |
-
248347
|
974 |
-
248351
|
975 |
-
248362
|
976 |
-
248508
|
977 |
-
248607
|
978 |
-
248734
|
979 |
-
248797
|
980 |
-
249480
|
981 |
-
249588
|
982 |
-
249750
|
983 |
-
249781
|
984 |
-
249807
|
985 |
-
249964
|
986 |
-
249973
|
987 |
-
249982
|
988 |
-
250122
|
989 |
-
250256
|
990 |
-
250373
|
991 |
-
250449
|
992 |
-
250466
|
993 |
-
250597
|
994 |
-
250664
|
995 |
-
250715
|
996 |
-
250885
|
997 |
-
250981
|
998 |
-
251018
|
999 |
-
251230
|
1000 |
-
251240
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test3.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
|
4 |
-
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")
|
5 |
-
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
|
6 |
-
|
7 |
-
# llama_model = AutoModelForCausalLM.from_pretrained("luodian/llama-7b-hf")
|
8 |
-
# llama_tokenizer = AutoTokenizer.from_pretrained("luodian/llama-7b-hf")
|
9 |
-
|
10 |
-
# Define the function for generating responses
|
11 |
-
def generate_response(model, tokenizer, prompt):
|
12 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
13 |
-
outputs = model.generate(**inputs, max_length=500, pad_token_id=tokenizer.eos_token_id)
|
14 |
-
response = tokenizer.decode(outputs[0])
|
15 |
-
return response
|
16 |
-
|
17 |
-
# Define the Gradio interface
|
18 |
-
def chatbot_interface(prompt):
|
19 |
-
vicuna_response = generate_response(vicuna_model, vicuna_tokenizer, prompt)
|
20 |
-
# llama_response = generate_response(llama_model, llama_tokenizer, prompt)
|
21 |
-
|
22 |
-
return {"Vicuna-7B": vicuna_response}
|
23 |
-
|
24 |
-
iface = gr.Interface(fn=chatbot_interface,
|
25 |
-
inputs="text",
|
26 |
-
outputs="text",
|
27 |
-
interpretation="default",
|
28 |
-
title="Chatbot with Three Models")
|
29 |
-
|
30 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|