research14 commited on
Commit
2ba8da5
·
1 Parent(s): d4e59c1
Files changed (1) hide show
  1. app.py +7 -18
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import gradio as gr
2
  import random
3
- import time
4
  from transformers import AutoModelForCausalLM, AutoTokenizer
5
 
6
  # Load Vicuna 7B model and tokenizer
@@ -8,14 +7,6 @@ model_name = "lmsys/vicuna-7b-v1.3"
8
  model = AutoModelForCausalLM.from_pretrained(model_name)
9
  tokenizer = AutoTokenizer.from_pretrained(model_name)
10
 
11
- def respond_vicuna(message, chat_history, vicuna_chatbot):
12
- input_ids = tokenizer.encode(message, return_tensors="pt")
13
- output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
14
- bot_message = tokenizer.decode(output[0], skip_special_tokens=True)
15
- chat_history.append((message, bot_message))
16
- time.sleep(2)
17
- return "", chat_history
18
-
19
  with gr.Blocks() as demo:
20
  gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
21
 
@@ -39,6 +30,7 @@ with gr.Blocks() as demo:
39
  prompt = gr.Textbox(show_label=False, placeholder="Enter prompt")
40
  send_button_POS = gr.Button("Send", scale=0)
41
  clear = gr.ClearButton([prompt, vicuna_chatbot1])
 
42
  with gr.Tab("Chunk"):
43
  gr.Markdown("Strategy 1 QA")
44
  with gr.Row():
@@ -60,15 +52,12 @@ with gr.Blocks() as demo:
60
  send_button_Chunk = gr.Button("Send", scale=0)
61
  clear = gr.ClearButton([prompt_chunk, vicuna_chatbot1_chunk])
62
 
63
- def respond(message, chat_history):
64
- input_ids = tokenizer.encode(message, return_tensors="pt")
65
- output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
66
- bot_message = tokenizer.decode(output[0], skip_special_tokens=True)
67
- chat_history.append((message, bot_message))
68
- time.sleep(2)
69
- return "", chat_history
70
 
71
- # Replace the old respond function with the new general function for Vicuna
72
- prompt.submit(lambda message, chat_history: respond_vicuna(message, chat_history, vicuna_chatbot1), [prompt, vicuna_chatbot1, vicuna_chatbot1_chunk])
73
 
74
  demo.launch()
 
1
  import gradio as gr
2
  import random
 
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
  # Load Vicuna 7B model and tokenizer
 
7
  model = AutoModelForCausalLM.from_pretrained(model_name)
8
  tokenizer = AutoTokenizer.from_pretrained(model_name)
9
 
 
 
 
 
 
 
 
 
10
  with gr.Blocks() as demo:
11
  gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
12
 
 
30
  prompt = gr.Textbox(show_label=False, placeholder="Enter prompt")
31
  send_button_POS = gr.Button("Send", scale=0)
32
  clear = gr.ClearButton([prompt, vicuna_chatbot1])
33
+
34
  with gr.Tab("Chunk"):
35
  gr.Markdown("Strategy 1 QA")
36
  with gr.Row():
 
52
  send_button_Chunk = gr.Button("Send", scale=0)
53
  clear = gr.ClearButton([prompt_chunk, vicuna_chatbot1_chunk])
54
 
55
+ # Define the Gradio interface
56
+ def chatbot_interface(prompt):
57
+ vicuna_response = generate_response(model, tokenizer, prompt)
58
+ return {"Vicuna-7B": vicuna_response}
 
 
 
59
 
60
+ # Use the chatbot_interface function in the prompt.submit() method
61
+ prompt.submit(chatbot_interface, [prompt, vicuna_chatbot1, vicuna_chatbot1_chunk])
62
 
63
  demo.launch()