Spaces:
Runtime error
Runtime error
File size: 3,613 Bytes
b308128 8c245db f9ca505 b308128 7eaa7b0 04fc021 d4e59c1 8c245db 28ca6ce cab4ff3 df3b804 cab4ff3 df3b804 cab4ff3 28ca6ce df3b804 cab4ff3 df3b804 cab4ff3 df3b804 cab4ff3 28ca6ce cab4ff3 df3b804 ac4f141 df3b804 7eaa7b0 8c245db ac4f141 d4e59c1 5e8be56 8c245db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import random
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load Vicuna 7B model and tokenizer
model_name = "lmsys/vicuna-7b-v1.3"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def respond_vicuna(message, chat_history, vicuna_chatbot):
input_ids = tokenizer.encode(message, return_tensors="pt")
output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
bot_message = tokenizer.decode(output[0], skip_special_tokens=True)
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
with gr.Blocks() as demo:
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
with gr.Tab("POS"):
gr.Markdown("Strategy 1 QA")
with gr.Row():
vicuna_chatbot1 = gr.Chatbot(label="vicuna-7b", live=True)
llama_chatbot1 = gr.Chatbot(label="llama-7b", live=False)
gpt_chatbot1 = gr.Chatbot(label="gpt-3.5", live=False)
gr.Markdown("Strategy 2 Instruction")
with gr.Row():
vicuna_chatbot2 = gr.Chatbot(label="vicuna-7b", live=True)
llama_chatbot2 = gr.Chatbot(label="llama-7b", live=False)
gpt_chatbot2 = gr.Chatbot(label="gpt-3.5", live=False)
gr.Markdown("Strategy 3 Structured Prompting")
with gr.Row():
vicuna_chatbot3 = gr.Chatbot(label="vicuna-7b", live=True)
llama_chatbot3 = gr.Chatbot(label="llama-7b", live=False)
gpt_chatbot3 = gr.Chatbot(label="gpt-3.5", live=False)
with gr.Row():
prompt = gr.Textbox(show_label=False, placeholder="Enter prompt")
send_button_POS = gr.Button("Send", scale=0)
clear = gr.ClearButton([prompt, vicuna_chatbot1])
with gr.Tab("Chunk"):
gr.Markdown("Strategy 1 QA")
with gr.Row():
vicuna_chatbot1_chunk = gr.Chatbot(label="vicuna-7b", live=True)
llama_chatbot1_chunk = gr.Chatbot(label="llama-7b", live=False)
gpt_chatbot1_chunk = gr.Chatbot(label="gpt-3.5", live=False)
gr.Markdown("Strategy 2 Instruction")
with gr.Row():
vicuna_chatbot2_chunk = gr.Chatbot(label="vicuna-7b", live=True)
llama_chatbot2_chunk = gr.Chatbot(label="llama-7b", live=False)
gpt_chatbot2_chunk = gr.Chatbot(label="gpt-3.5", live=False)
gr.Markdown("Strategy 3 Structured Prompting")
with gr.Row():
vicuna_chatbot3_chunk = gr.Chatbot(label="vicuna-7b", live=True)
llama_chatbot3_chunk = gr.Chatbot(label="llama-7b", live=False)
gpt_chatbot3_chunk = gr.Chatbot(label="gpt-3.5", live=False)
with gr.Row():
prompt_chunk = gr.Textbox(show_label=False, placeholder="Enter prompt")
send_button_Chunk = gr.Button("Send", scale=0)
clear = gr.ClearButton([prompt_chunk, vicuna_chatbot1_chunk])
def respond(message, chat_history):
input_ids = tokenizer.encode(message, return_tensors="pt")
output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
bot_message = tokenizer.decode(output[0], skip_special_tokens=True)
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
# Replace the old respond function with the new general function for Vicuna
prompt.submit(lambda message, chat_history: respond_vicuna(message, chat_history, vicuna_chatbot1), [prompt, vicuna_chatbot1, vicuna_chatbot1_chunk])
demo.launch()
|