Spaces:
Runtime error
Runtime error
File size: 1,216 Bytes
b308128 8c245db f9ca505 b308128 7eaa7b0 04fc021 8c245db 3e98569 ac4f141 8c245db 7eaa7b0 8c245db ac4f141 3e98569 5e8be56 8c245db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
import random
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load Vicuna 7B model and tokenizer
model_name = "lmsys/vicuna-7b-v1.3"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
with gr.Blocks() as demo:
with gr.Row():
vicuna_chatbot = gr.Chatbot(label="vicuna-7b", live=False)
llama_chatbot = gr.Chatbot(label="llama-7b", live=False)
gpt_chatbot = gr.Chatbot(label="gpt-3.5", live=False)
with gr.Row():
prompt = gr.Textbox(show_label=False, placeholder="Enter prompt")
send_button_Chunk = gr.Button("Send", scale=0)
clear = gr.ClearButton([prompt, vicuna_chatbot])
def respond(message, chat_history, chatbot_idx):
input_ids = tokenizer.encode(message, return_tensors="pt")
output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
bot_message = tokenizer.decode(output[0], skip_special_tokens=True)
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
prompt.submit(respond, [prompt, vicuna_chatbot, vicuna_chatbot])
demo.launch()
|