
Neural Graph Mapping for Dense SLAM with Efficient Loop Closure

Leonard Bruns1 Jun Zhang2 Patric Jensfelt1

1KTH Royal Institute of Technology, Stockholm, Sweden
2TU Graz, Graz, Austria

{leonardb, patric}@kth.se, jun.zhang@tugraz.at

Abstract

Existing neural field-based SLAM methods typically em-

ploy a single monolithic field as their scene representation.

This prevents efficient incorporation of loop closure con-

straints and limits scalability. To address these shortcom-

ings, we propose a neural mapping framework which an-

chors lightweight neural fields to the pose graph of a sparse

visual SLAM system. Our approach shows the ability to

integrate large-scale loop closures, while limiting neces-

sary reintegration. Furthermore, we verify the scalabil-

ity of our approach by demonstrating successful building-

scale mapping taking multiple loop closures into account

during the optimization, and show that our method outper-

forms existing state-of-the-art approaches on large scenes

in terms of quality and runtime. Our code is available

open-source at https://github.com/KTH-RPL/

neural_graph_mapping.

1. Introduction

Simultaneous localization and mapping (SLAM) using

cameras, often referred to as visual SLAM, has been a long

standing problem in computer vision [7, 9, 14]. In partic-

ular, dense visual SLAM aims to construct a detailed geo-

metric representation of the environment enabling various

applications, such as, occlusion handling in augmented re-

ality [26], planning and collision checking in robotics [1],

or camera localization [21]. Often volumetric scene repre-

sentations are employed as they are well-suited for online

data integration. Traditional volumetric representations use

grid-based structures [25], often incorporating acceleration

approaches like octrees [10, 18] or voxel hashing [27] in

practice. However, incorporating loop closure constraints in

volumetric maps is difficult [6, 30, 41] compared to sparse

keypoint-based maps, which can easily be deformed.

Recently, neural fields have emerged as a memory-

efficient volumetric scene representation due to their

amenability to differentiable rendering-based optimization

[34]. Building on the first neural field-based SLAM method

Figure 1. We propose to represent a scene by a set of neural fields

(centers indicated by blue spheres) anchored to keyframes in a

pose graph with each field capturing the scene within a ball sur-

rounding it. This allows to dynamically extend the scene while

also incorporating loop closure deformations into the volumetric

scene representation without requiring full reintegration.

iMAP [33], various adaptations of this method have been

proposed. These adaptations primarily focused on enhanc-

ing optimization speed by altering network architecture,

sampling scheme, and rendering formulation. Nevertheless,

the majority of existing neural field-based SLAM methods

[12, 33, 39, 43, 44] remain constrained by their monolithic

data structure (i.e., a single fixed-size architecture). In that

regard, neural fields share the same limitation as other vol-

umetric scene representations, that is, after data has been

integrated, the volumetric scene cannot easily be deformed

to take loop closure constraints into account.

To address this issue, we propose to represent the scene

by an extendable set of lightweight neural fields (see Fig. 1).

These fields are anchored to keyframes within a pose graph,

collectively forming the volumetric map while maintaining

the ability to deform as the keyframe poses change upon

1

https://github.com/KTH-RPL/neural_graph_mapping
https://github.com/KTH-RPL/neural_graph_mapping

loop closure. Our design allows to combine the benefits of

sparse pose graph-based SLAM methods while maintain-

ing a volumetric scene representation that remains consis-

tent with the pose graph without requiring costly full reinte-

gration of previous sensor data. Furthermore, our method

eliminates the necessity for fixed scene boundaries com-

mon among existing neural-field-based SLAM methods. It

achieves this by allocating additional fields dynamically as

new parts of the scene come into view.

To summarize, our contributions are

• a novel SLAM framework that combines the robust, ac-

curate tracking and efficient loop closure handling of

sparse visual SLAM with the differentiable-rendering-

based dense mapping of neural scene representations,

• a multi-field scene representation in which neural fields

are anchored relative to a pose graph allowing for large-

scale map deformations while limiting necessary reinte-

gration, and

• a thorough comparison to multiple state-of-the-art meth-

ods on scenes of varying scales; including a novel set

of sequences for the larger Replica scenes that allow to

benchmark robustness and scalability.

2. Related Work

2.1. Traditional Volumetric Loop Closure

The difficulty of incorporating loop closure constraints in

volumetric scene representations is not limited to neu-

ral representations. Traditional volumetric representations

such as sparse grids and octrees also require solutions to ef-

ficiently adapt to pose graph changes. Notable examples in-

clude: Kintinuous [41] in which the volumetric map is only

used for local fusion and globally a mesh is deformed based

on a deformation graph; BundleFusion [6] in which frames

whose pose has changed are removed and reintegrated pri-

oritized based on the amount of change; and VoxGraph [30]

in which submaps are aligned and resulting constraints are

included in the pose graph optimization. In this work, we

aim to enable efficient loop closure specifically for neural

field representations in which data reintegration is expen-

sive.

2.2. Neural Field­Based Scene Representations

Neural fields are parametrized differentiable functions that

map coordinates to quantities at that point in space. Ini-

tially, neural fields were trained using 3D supervision and

were used to represent shape as occupancy [4, 19] or signed

distance fields (SDFs) [28]. Shortly after, neural radiance

fields (NeRFs) were introduced optimized using only 2D

images through differentiable volume rendering [20].

Focusing on surface reconstruction, multiple works pro-

posed SDF-based representations replacing the density-

based approach in NeRFs. [2] use a heuristic rendering

model that allows to optimize SDFs yielding improved sur-

face reconstructions; however, their model is not occlusion-

aware. An occlusion-aware approach for unbiased SDF-

based volume rendering was proposed in [40].

Focusing on training and inference speed, [23] showed

significant speed-ups by employing a multi-resolution hash

encoding in which learnable features in a hash table

are used instead of a fixed Fourier encoding to lift the

low-dimensional, low-frequency input point to a high-

dimensional, high-frequency embedding. [31] further pro-

posed to replace the multi-resolution voxel grid with a

multi-resolution permutohedral lattice due to its better scal-

ability to higher dimensions. We adopt this approach as the

positional encoding for each field.

Fewer works have investigated the use of multiple neu-

ral fields. In Block-NeRF [35] multiple fields are combined

to represent whole neighborhoods. However, the field po-

sitions are predefined. In Nerflets [42] fields of varying

size are composed to achieve an editable scene represen-

tation. NeRFuser [8] proposes methods for registering and

blending multiple NeRFs. Finally, vMAP [15] uses mul-

tiple fields to represent individual objects highlighting the

potential of vectorizing neural field evaluations. The latter

is also employed in this work.

2.3. Neural Field­Based SLAM

iMAP [33] was the first SLAM method using a multilayer

perceptron (MLP) as the underlying scene representation.

During optimization previous keyframes have to be contin-

uously reintegrated to avoid forgetting. Subsequently, vari-

ous modifications of this approach have been proposed aim-

ing to alleviate this forgetting issue and improve run-time.

NICE-SLAM [44] addresses the forgetting issue by em-

ploying a hierarchical feature grid combined with a fixed,

pretrained decoder MLP. By adopting an SDF-based field

combined with efficient learnable positional encodings, ES-

LAM [12] and Co-SLAM [39] demonstrate significantly

improved optimization times. Specifically, ESLAM uses a

tri-plane [3] encoding, whereas Co-SLAM uses the afore-

mentioned multi-resolution voxel hash encoding [23]. Co-

SLAM further complements the hash encoding with one-

blob encodings [22] to improve scene completion. How-

ever, none of the above approaches support integration of

loop closure constraints, limiting their applicability to larger

scenes, in which accumulation of drift is unavoidable.

Matsuki et al. [17] propose a similar idea to ours, also us-

ing multiple fields posed relative to a pose graph. However,

they employ space warping in which each field in princi-

ple covers the entire scene. Synthesized views from mul-

tiple fields are merged through alpha compositing. This

approach is well-suited for novel view synthesis; however,

generalizes poorly to mesh extraction and other geometric

queries. Instead, in our work, each field covers a Euclidean

2

Independent multi-view optimization (Sec. 3.3) Multi-field scene representation (Sec. 3.1) Queries (Sec. 3.4)

Mesh extraction

View synthesis

Keyframe-anchored fields

Ft = {(fi, ki, T
ki

i
)}

Keyframes

Kt = {(Ck,Dk)}
Keyframe poses

Tt = { T
w

k}
RGB-D

frame
Pose graph-based SLAM

Is keyframe? Instantiate new

fields (Sec. 3.2)

Tt−1 → Tt

Figure 2. Neural graph map framework overview. Our framework can be used with any pose graph-based SLAM system and maintains

a set of neural fields anchored relative to the keyframes of the SLAM system’s pose graph. Each field captures the scene in a sphere

surrounding it in local coordinates. The set of such fields represents a deformable volumetric scene representation that can easily adapt to

and stay in sync with the pose graph. To enable efficient optimization and scalability the fields are optimized independently and in parallel.

This design allows to average the output of overlapping fields in 3D leading to well-defined queries (e.g., mesh extraction and novel view

synthesis).

ball around it, which allows general geometric queries. In

MIPS-Fusion [36] global bundle adjustment at the level of

fields is performed. Notably, both MIPS-Fusion and NEW-

TON are limited to a small number (∼10) of fields, where

each field can be interpreted as a submap. In contrast, our

formulation allows training and maintenance of hundreds

of fields and can therefore incorporate local and global pose

graph deformations in a more fine-grained manner.

Finally, GO-SLAM [43] also incorporates loop clo-

sure constraints through extending DROID-SLAM [38] and

biasing the optimization towards keyframes whose pose

changed the most. However, it still uses a single neural

field, which requires reoptimization after loop closure. In-

stead we aim to achieve instant map deformation upon loop

closure by anchoring fields to keyframes.

3. Method

We consider the problem of online mapping with an RGB-

D camera without ground-truth poses. That is, given a

stream of RGB-D frames (Ct,Dt) composed of color im-

ages Ct ∈ R
H×W×3 and depth maps Dt ∈ R

H×W , our

goal is to build a dense scene representation at each step

t ∈ {1, ..., T} = Nt taking into account only the data from

the current and previous steps N≤t.

Figure 2 gives an overview of the proposed frame-

work. Similar to other recent neural field-based mapping

approaches [15, 17, 43], our approach relies on an off-the-

shelf keyframe-based SLAM system to provide a set of

posed keyframes as well as the pose of the current frame.

3.1. Multi­Field Scene Representation

Let Kt = {(Ck,Dk) | k ∈ Nk ⊆ N≤t} and Tt = { T
w

k ∈
SE(3) | k ∈ Nk} denote the set of keyframes and keyframe

poses at time step t, respectively.

We propose to represent the scene by an extendable set

of posed neural fields

Ft = {(fi, ki, T
ki

i) | i ∈ {1, ..., Ft} = Nf}, (1)

where each field

fi : R
3 → R

3 × R

x 7→ (c, s)
(2)

maps a 3D point x to a color c and truncated signed distance

s at that point (see Sec. 3.3 for further details). Each field is

rigidly attached to a parent keyframe with index ki ∈ I(Kt)
(with I denoting the set of indices) by a transform T

ki

i ∈
SE(3), which can be decomposed into a translation tki

i ∈
R

3 and rotation R
ki

i ∈ SO(3). To limit the complexity that

each field stores, each field only captures the scene within a

sphere of fixed radius r around its center.

In the following sections the proposed strategies to in-

stantiate and anchor fields to the pose graph (Sec. 3.2), op-

timize the fields (Sec. 3.3), and query (e.g., for mesh ex-

traction and view synthesis) the full scene representation

(Sec. 3.4) are described. Finally, further architecture details

are provided (Sec. 3.5).

3.2. Field Instantiation

Whenever a new keyframe k is added to the pose graph

new fields are instantiated such that all observed 3D points

Xw
k in the keyframe are covered by at least one field of ra-

dius r. An approximate two-stage algorithm is used (see

Fig. 3). First, the uncovered 3D points Xunc = {x ∈
Xw

k | ∥x − T
w

ki
tki

i∥ > r ∀ i ∈ Nf} are found. Sec-

ond, the space is divided into voxel cells with a side length

of g = 2r/
√
3, such that a cell is fully covered by a field of

radius r when the center of the field is at the center of the

3

cell. New fields are instantiated in the center of all cells that

contain a point from Xunc and no field center. This scheme

ensures that a minimum distance of g/2 to existing fields is

maintained; however, points in Xunc might remain uncov-

ered when fields move away from the cell centers through

pose graph deformations. To alleviate the chance of uncov-

ered points over time, the voxel grid is randomly shifted for

every added keyframe.

g = 2r/
√
3

r

X

Xunc

F

Fnew

Figure 3. Grid-based instantiation scheme. A new keyframe (top-

left) observes world points X (black & red dots). The points Xunc

(red dots) that are not covered by any of the existing fields F (blue

circles) are determined. Cells that contain uncovered points and no

existing field center (hatched orange) are used to instantiate new

fields Fnew (orange circles). The new fields are positioned in the

center of the uncovered cells and anchored to the keyframe.
.

3.3. TSDF­Based Optimization

For each new frame coming at time step t, a fixed number

of optimization steps Nit are performed on up to Nf fields.

During the optimization the fields fi are trained indepen-

dently, allowing for efficient parallelization [15]. Therefore,

we drop the field index i in the following.

Due to its well-defined isosurface for mesh extraction,

we model the geometry as a truncated signed distance field

(TSDF) adopting the TSDF-based rendering model from [2]

and modify it to be occlusion-aware. Specifically, instead

of directly converting signed distances to sample weights as

done in [2, 39], we first convert them to occupancy prob-

abilities. That is, given Ns samples along a ray xi =
o + lid, i = 1, ..., Ns with origin o and direction d, the

colors and signed distances (ci, si) = f(xi) along the ray

are computed. The signed distances are converted to occu-

pancy probabilities using

oi = 4σ
(ηsi

τ

)

σ
(

−ηsi
τ

)

, (3)

where σ denotes the sigmoid function, τ is the truncation

distance, and η is a parameter that determines how quickly

occupancy probability decays around the surface. Note that

this definition ensures oi = 1.0 for si = 0.0. The ray’s

rendered color and depth are then computed via the weight

wi = oi
∏i−1

j=1(1− oj) as

c =

Ns
∑

i=1

wici d =

Ns
∑

i=1

wili (4)

assuming the ray’s direction d was scaled appropriately.

Sampling Strategy Each optimization iteration follows a

three-stage sampling procedure. Specifically, we sample:

(1) Nf fields that will be optimized in the next iteration; (2)

Nr ray segments (with associated observed color c and dis-

tance d) for each sampled field; (3) Ns query points along

each sampled ray segment. The sampling strategy is vi-

sualized in Fig. 4 (see supplementary material for further

details).

Loss Our loss is a weighted sum of four terms: color,

depth, TSDF, and free-space. The weighing has been found

experimentally to achieve a good trade-off between appear-

ance and geometry quality.

The color loss is computed as the mean L1-norm of the

difference between observed and estimated color

lcolor =
1

|C|
∑

(c,c̃)∈C
∥c− c̃∥1 (5)

and the depth loss is computed as the mean Huber loss [11]

between observed and estimated depth with δ = 5 cm

ldepth =
1

|D|
∑

(d,d̃)∈D

Huberδ(d, d̃), (6)

where C and D are sets containing tuples of the observed

and estimated color and depth, respectively.

Finally, the set of all query points X is filtered into two

sets Xtsdf and Xfs based on whether a query point’s pro-

jected depth li is within the truncation distance τ of the cor-

responding observed depth lobs,i or is more than τ in front

of it, respectively. A query point’s associated estimated

signed distance s̃i and its signed distance to the observed

depth si = lobs,i − li are then used to compute the TSDF

loss as

ltsdf =
1

|Xtsdf |
∑

i∈I(Xtsdf)

(s̃i − si)
2 (7)

and the free-space loss as

lfs =
1

|Xfs|
∑

i∈I(Xfs)

(s̃i − τ)2. (8)

4

Table 1. Quantitative mesh reconstruction quality on the synthetic dataset (bestO, second bestO).

Replica NRGBD Replica-Big

Avg. br ck gr gwr ki ma sc tg wa apt0 apt1 apt2

NICE-S. [44]

Acc (cm) 2.38O 2.46O 10.76 2.33O 2.71O 9.18 1.70O 4.55O 8.37 7.37 15.98O 17.56 23.39O

Acc. R. (%) 93.17O 92.41O 65.34 93.87O 93.63O 57.29 95.06O 71.69O 56.22 77.38O 30.67O 41.48 28.20

Comp. (cm) 2.84O 4.82O 14.21O 3.91O 3.19O 12.82O 3.36O 10.69O 8.02 5.39O 12.73O 11.59 19.77

Comp. R. (%) 90.11O 86.18O 53.58 86.66O 87.64O 50.04 84.06O 58.79O 59.24 69.04O 31.06O 42.21 26.80

Co-S. [39]

Acc (cm) 4.29 2.21O 4.73O 1.89O 2.02O 7.40O 1.74O 3.30O 2.07O 6.24O 37.69 12.89O 30.19

Acc. R. (%) 87.02 93.24O 75.16O 95.17O 94.84O 77.72O 93.98O 78.01O 92.05O 84.92O 18.85 62.11O 34.71O

Comp. (cm) 4.09O 2.06O 8.76O 2.93O 2.41O 5.14O 2.75O 4.29O 2.83O 3.85O 17.91 7.07O 17.75O

Comp. R. (%) 86.39O 93.49O 63.17O 91.32O 93.96O 78.19O 86.41O 70.90O 86.62O 81.70O 21.93 66.37O 36.75O

GO-S. [43]

Acc (cm) 2.89O 3.89 4.08O 2.50 2.87 3.28O 1.54O 6.46 1.48O 5.46O 14.20O 8.92O 11.82O

Acc. R. (%) 89.31O 77.64 81.94O 91.46 86.87 84.74O 97.44O 66.62 96.32O 73.90 57.93O 74.38O 80.22O

Comp. (cm) 6.18 9.25 29.60 9.50 4.50 5.11O 4.60 12.35 7.26O 12.57 7.98O 5.19O 5.87O

Comp. R. (%) 74.20 64.29 54.56O 71.31 75.12 72.58O 75.53 54.24 70.78O 57.33 59.21O 73.90O 81.06O

Ours

Acc (cm) 2.88O 2.26O 3.21O 1.90O 2.19O 2.19O 1.89 2.60O 2.05O 4.00O 10.14O 5.26O 11.45O

Acc.-Ratio (%) 89.50O 90.58O 87.81O 94.60O 93.78O 96.18O 93.01 93.45O 91.50O 85.97O 56.09O 91.64O 72.35O

Comp. (cm) 2.36O 2.42O 9.03O 2.71O 2.44O 30.37 3.11O 4.67O 3.66O 4.64O 8.71O 2.48O 3.94O

Comp. R. (%) 92.11O 94.01O 77.83O 91.62O 92.35O 73.03O 83.77O 87.78O 81.76O 81.07O 58.52O 96.26O 82.70O

∗
Acknowledging the small differences on most Replica sequences, we report the average here and include the full results in the supplementary material.

†
We evaluated Co-SLAM without ground-truth initialization for fair comparison (see supplementary material for further discussion.)

(1) (2)

(3)

o + ld

lmin lmax

Nup

lobs

2τ

Ndp

Figure 4. Multi-view sampling procedure. (1) A subset of fields

(orange circles) to optimize in the next iteration is sampled with

half the fields stemming from the currently observed fields (or-

ange outline). (2) For each field, the observing keyframes (opaque

frustums) are approximated based on whether samples on the field

boundary (red dots) fall into the observed keyframe region. Ray

segments to supervise the field are then sampled from the observ-

ing keyframes. (3) Each sampled ray segment [lmin, lmax] is ap-

proximated by Nup uniformly sampled query points that cover the

whole field and Ndp depth-guided query points distributed within

the truncation distance τ around the observed distance lobs.

3.4. Novel View Synthesis and Mesh Extraction

Due to the independent optimization described in Sec. 3.3

all fields will be supervised at least within a sphere of ra-

dius r. Therefore, overlapping regions will contain differ-

ent colors and distances. To reduce transition artifacts at

the boundary of fields, it is possible to query the k nearest

fields and average the outputs based on the field distances

(see supplementary material for further details). For query

points outside of all fields’ spheres empty space is assumed,

that is, s = 1.

Novel View Synthesis Since no depth observation is

available at inference time, a fixed far distance lfar is used.

Query points are uniformly distributed within the ray inter-

val [0, lfar] at the same density as the depth-guided points,

that is, Np,inf = lfarNdp/(2τ) samples are used.

Mesh Extraction To extract a mesh from our scene rep-

resentation the marching cubes algorithm [16] with an un-

biased isosurface level of 0 is used.

3.5. Architecture Details

ORB-SLAM2 is used as the keyframe-based SLAM system

in this work [24]. However, our proposed method is agnos-

tic to the exact SLAM framework as long as a pose graph

as described in Sec. 3.1 is available. We precomputed the

ORB-SLAM results and will publish them in conjunction

with our code to improve reproducibility.

Each field fi is parameterized by a permutohedral hash

encoding [31] followed by a linear layer with ReLU acti-

vation and another linear layer mapping to the output color

and distance. We also experimented with other positional

encodings, such as Fourier encoding [34], triplane encod-

ing [3, 12], and voxel hash encoding [23]; however, the best

results given the same time budget were achieved with the

permutohedral hash encoding closely followed by the voxel

hash encoding.

To efficiently evaluate and optimize multiple neural

fields in parallel, optimization and evaluation is vectorized

following [15]. One limitation imposed by PyTorch’s [29]

vectorization framework is that the batch size has to be the

same for all evaluated networks. The design choices de-

5

scribed in Sec. 3.3 are tailored to this limitation to allow

sampling the same number of rays per supervised field.

4. Experiments

To verify the proposed approach, we report results follow-

ing the reconstruction-based evaluation protocol of Wang

et al. [39].

4.1. Experimental Setup

Datasets We evaluate our method quantitatively on three

synthetic datasets of varying difficulty: the Replica [32] se-

quences from iMAP [33], the NRGBD dataset by [2], and

three novel sequences on the larger Replica scenes (Replica-

Big). The latter contains challenging trajectories with larger

loops spanning multiple rooms. Further, we present quali-

tative results on two real-world datasets: ScanNet [5] and

Kintinuous [41]. The latter contains a large-scale loop,

whereas the tested ScanNet sequences typically contain one

or two smaller loops.

Metrics We adopt the reconstruction metrics reported by

[39], but use completion ratio instead of depth L1, which

is skewed by holes in the mesh and therefore less intuitive

than the point set-based metrics. Completion ratio, defined

akin to accuracy ratio, naturally completes their point set-

based metrics. Therefore, we report the methods’ accuracy,

completion, accuracy ratio, and completion ratio at a 5 cm
threshold. We further use F1-score to summarize recon-

struction quality in a single metric [37]. We do not evaluate

tracking metrics, since we use ORB-SLAM2 as the track-

ing backend and our focus is on dense mapping, while effi-

ciently supporting map deformations due to loop closures.

Baselines We compare our method to three state-of-the-

art neural field-based SLAM methods: NICE-SLAM [44],

Co-SLAM [39], and GO-SLAM [43]. Co-SLAM is, to the

best of our knowledge, the best available method in terms of

quality and run-time at the time of writing. However, nei-

ther NICE-SLAM nor Co-SLAM can integrate loop closure

constraints. GO-SLAM is, to our knowledge, the only other

published neural field-based method that also incorporates

loop closure constraints.

Implementation Details For all experiments we use the

same parameters, most notably, r = 1m, Nit = 5, Nf =
32, Nr = 512, Nup = 8, Ndp = 16 and k = 2. We

adjust the truncation distance τ from 0.1m for synthetic

data to 0.2m for real data to account for the increased depth

noise. For ORB-SLAM2 we use the default parameters in

the RGB-D setup increasing the number of extracted fea-

tures in challenging scenes with low texture. All remaining

parameters are provided in the supplementary material and

as part of the released code.

Table 2. Run-time and model size comparison of all methods. Our

method compares favorably in terms of processing time; however,

is less efficient in terms of model size.

FPS (Hz) Model Size (MB)

br ck apt0 br ck apt0

NICE-SLAM 2.74 2.70 2.25 5.3 21.6 57.1

Co-SLAM 12.70 12.84 10.75 7.0 7.0 7.0

GO-SLAM 17.35 12.06 6.36 66.5 66.5 66.5

Ours 20.52 20.17 20.15 27.0 82.1 222.3

4.2. Reconstruction Quality Evaluation

Table 1 reports quantitative results on all datasets. Our

method achieves state-of-the-art results on the smaller

scenes (Replica, NRGBD), while outperforming existing

methods on larger scenes (Replica-Big). The qualitative re-

sults on Replica-Big shown in Figure 5 further illustrates

the differences between the methods. Both NICE-SLAM

and Co-SLAM drift off and cannot correct for the drift

upon returning to previous frames leading to poor results.

GO-SLAM also benefiting from loop closures successfully

maps large parts; however, fails in the last section of apt0

and generally exhibits worse reconstruction quality. While

GO-SLAM achieves quantitatively similar results as our

method on apt0, we note that qualitatively our method

shows better scene completion and robustness.

In Fig. 15 we further show results on two scenes of the

ScanNet dataset also including a comparison to BundleFu-

sion [6]. The benefit of neural scene representations over

classic representations in terms of scene completion can

easily be observed. While not as much drift accumulates

on these scenes, our method still achieves on par results

to the otherwise best performing method Co-SLAM, while

achieving slightly more globally consistent results (see, e.g.,

bottom-right corner of carpet).

Figure 7 shows results on the Kintinuous sequence be-

fore and after loop closure without additional optimization.

Specifically, our framework allows immediate map defor-

mation incorporating the large-scale loop closure by only

adjusting the field poses connecting the corridors. GO-

SLAM did not close the loop and Co-SLAM failed in the

second corner.

4.3. Run­Time and Model Size Analysis

In Tab. 2 we compare run-time1 and model size of our

method to the baselines on three representative scenes of

different sizes. Despite the overhead of parallelized train-

ing of multiple fields, our approach compares favorably in

1We report time per frame by benchmarking the execution time for the

whole sequence and dividing it by the number of frames. Mesh extraction

and other logging has been deactivated for all methods for fair compari-

son. All evaluations were run with an Intel Core i9-13900KF and NVIDIA

GeForce RTX 4090.

6

Ground-truth NICE-SLAM Co-SLAM GO-SLAM Ours

a
p
t
0

a
p
t
1

a
p
t
2

Figure 5. Qualitative comparison of final reconstruction on Replica-Big. NICE-SLAM and Co-SLAM do not achieve globally consistent

results. GO-SLAM and ours achieve significantly better results due to supporting loop closure. Particularly in terms of scene completion

our method outperforms GO-SLAM.
BundleFusion NICE-SLAM Co-SLAM GO-SLAM Ours

s
c
e
n
e
0
0
0
0
0
0

s
c
e
n
e
0
1
0
6
0
0

Figure 6. Qualitative comparison of final reconstruction on ScanNet. BundleFusion achieves globally consistent results; however, leaves

many regions uncompleted. Our method achieves overall the best alignment, while maintaining the advantages in terms of scene completion

of neural scene representations.

(a) Go-SLAM end of sequence (frame 4014) (b) Ours before loop closure (frame 3855) (c) Ours after loop closure (frame 3856)

Figure 7. Qualitative results on the Kintinuous sequence (first row shows top view; second row shows side view). No additional optimiza-

tion has been performed between extracting the two meshes for our method; only the field poses have changed successfully connecting the

corridors (note the duplicate floors in the highlighted regions in (a) and (b)).

7

terms of run-time. We note that GO-SLAM significantly

slows down for longer sequences, whereas our methods

maintains a consistent frame rate. Our proposed multi-field

representation requires more parameters than the mono-

lithic baselines especially for larger scenes. We suspect this

is due to the less efficient hash table use, which depending

on the field’s content will be unnecessarily large. Sharing

hash tables among multiple fields might be a viable future

direction to further reduce the model size.

Field Radius and Hash Map Size In Fig. 8 the mem-

ory requirement and F1-score for different field radii r and

hash table sizes T is reported. In general, larger fields re-

quire larger hash maps to maintain the same quality. Our

approach works across a wide range of r, but the ability to

adapt to loop closures will be limited for larger r.

100 101 102 103

75

80

85

90

T = 26

T = 28

T = 210
T = 212 T = 213

Model Size (MB)

F
1
-S

co
re

(%
)

r = 0.5m

r = 1.0m

r = 2.0m

Figure 8. Impact of field radius r and hash table size T on model

size and reconstruction quality. Larger radii lead to fewer fields

and smaller model size. However, larger radii require larger hash

tables to achieve similar quality.

Batch Size and Iterations Increasing the number of iter-

ations per frame or the batch size will directly influence run-

time and quality. In Fig. 9 the processing time per frame and

F1-score is reported for various settings. Notably, our ap-

proach maintains high reconstruction quality even at frame

rates of over 50Hz.

101 102 103

90

91

92

Nit = 1

Nit = 3

Nit = 5

Nit = 10
Nit = 20

Time per Frame (ms)

F
1
-S

co
re

(%
)

Nr = 128

Nr = 512

Nr = 2048

Figure 9. Impact of number of iterations per frame Nit and number

of rays per field Nr (i.e., batch size per field) on run-time and

reconstruction quality.

Single-view Multi-view

Figure 10. Single-view supervision leads to artifacts when the op-

posite side of a wall is observed. Multi-view supervision signifi-

cantly reduces this local forgetting effect.

k = 1 k = 2 k = 4

Figure 11. Comparison of rendered views with different num-

ber of neighbors k. By increasing the number of nearest neigh-

bors taken into account, the number of visible field transitions

decreases. These transitions are most visible in unobserved re-

gions, such as the underside of the countertop shown here (see

highlighted regions).

4.4. Ablation Study

Multi-View Supervision In Fig. 10 we compare opti-

mization with targets sampled from all keyframes as de-

scribed in Sec. 3.3 to targets sampled from a single view

only. In the latter case, optimization alternates between a

random previous keyframe and the latest keyframe. The

figure shows that single-view supervision exhibits local for-

getting effects, particularly notable when a previously seen

wall is observed from the other side. Multi-view optimiza-

tion avoids this local forgetting effect by combining previ-

ous and current observations in each optimization step.

K-Nearest Neighbor Averaging Figure 11 shows render-

ings of our model with varying values for k (see Sec. 3.4).

For higher k visible transitions between fields are reduced

and smoothed out. Note that due to our independent training

scheme, all fields are trained in overlapping regions making

averaging at the query point a viable strategy. While higher

values for k lead to improved results, it also multiplies the

number of queries required for rendering and mesh extrac-

tion (note that optimization time is unaffected by k).

5. Conclusion

In this work, we presented a novel approach to volumetric

mapping that anchors lightweight neural fields to the pose

graph of a sparse visual SLAM system. This framework al-

lows to incorporate loop closures into the volumetric map at

near-zero cost improving robustness and scalability. Com-

pared to existing neural mapping approaches that support

loop closure, our approach deforms the map reducing the

need for reintegration while still allowing well-defined geo-

metric queries (such as mesh extraction) without relying on

8

any space warping or image-space fusion.

Limitations While our approach enables efficient incor-

poration of loop closure constraints, it is not without draw-

backs. In particular the multi-field representation is less

memory-efficient compared to monolithic neural field rep-

resentations, since those can use the available network ca-

pacity relatively unconstrained, whereas this adaptiveness

is constrained to the local spheres in our approach. Further-

more, the neural scene representation is not used to improve

the SLAM result and a tigher integration of dense mapping

and sparse tracking could lead to improved robustness.

References

[1] Michal Adamkiewicz, Timothy Chen, Adam Caccavale,

Rachel Gardner, Preston Culbertson, Jeannette Bohg, and

Mac Schwager. Vision-only robot navigation in a neural ra-

diance world. RAL, 7(2):4606–4613, 2022. 1

[2] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural RGB-D surface

reconstruction. In CVPR, pages 6290–6301, 2022. 2, 4, 6

[3] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,

Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J

Guibas, Jonathan Tremblay, Sameh Khamis, et al. Effi-

cient geometry-aware 3D generative adversarial networks. In

CVPR, pages 16123–16133, 2022. 2, 5

[4] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In CVPR, pages 5939–5948,

2019. 2

[5] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:

Richly-annotated 3D reconstructions of indoor scenes. In

CVPR, pages 5828–5839, 2017. 6, 4

[6] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram

Izadi, and Christian Theobalt. BundleFusion: Real-time

globally consistent 3d reconstruction using on-the-fly surface

reintegration. ACM TOG, 36(4):1, 2017. 1, 2, 6

[7] Andrew J Davison, Ian D Reid, Nicholas D Molton, and

Olivier Stasse. MonoSLAM: Real-time single camera

SLAM. IEEE TPAMI, 29(6):1052–1067, 2007. 1

[8] Jiading Fang, Shengjie Lin, Igor Vasiljevic, Vitor Guizilini,

Rares Ambrus, Adrien Gaidon, Gregory Shakhnarovich, and

Matthew R Walter. NeRFuser: Large-scale scene represen-

tation by NeRF fusion. arXiv preprint arXiv:2305.13307,

2023. 2

[9] Christopher G Harris and JM Pike. 3D positional integration

from image sequences. Image and Vision Computing, 6(2):

87–90, 1988. 1

[10] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill

Stachniss, and Wolfram Burgard. Octomap: An efficient

probabilistic 3d mapping framework based on octrees. Au-

tonomous Robots, 34:189–206, 2013. 1

[11] Peter J Huber. Robust estimation of a location parameter.

Ann. Math. Statist., 35:73–101, 1964. 4

[12] Mohammad Mahdi Johari, Camilla Carta, and François

Fleuret. ESLAM: Efficient dense SLAM system based on

hybrid representation of signed distance fields. In CVPR,

pages 17408–17419, 2023. 1, 2, 5

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 2

[14] Georg Klein and David Murray. Parallel tracking and map-

ping for small ar workspaces. In ISMAR, pages 225–234,

2007. 1

[15] Xin Kong, Shikun Liu, Marwan Taher, and Andrew J Davi-

son. vMAP: Vectorised object mapping for neural field

SLAM. In CVPR, pages 952–961, 2023. 2, 3, 4, 5

[16] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. In ACM

SIGGRAPH, pages 163–169, 1987. 5

[17] Hidenobu Matsuki, Keisuke Tateno, Michael Niemeyer, and

Federic Tombari. NEWTON: Neural view-centric map-

ping for on-the-fly large-scale SLAM. arXiv preprint

arXiv:2303.13654, 2023. 2, 3

[18] Donald Meagher. Geometric modeling using octree encod-

ing. Computer Graphics and Image Processing, 19(2):129–

147, 1982. 1

[19] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3D reconstruction in function space. In CVPR,

pages 4460–4470, 2019. 2

[20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing scenes as neural radiance fields for view syn-

thesis. In ECCV, pages 405–421. Springer, 2020. 2

[21] Arthur Moreau, Nathan Piasco, Dzmitry Tsishkou, Bogdan

Stanciulescu, and Arnaud de La Fortelle. LENS: Localiza-

tion enhanced by NeRF synthesis. In CoRL, pages 1347–

1356, 2022. 1

[22] Thomas Müller, Brian McWilliams, Fabrice Rousselle,

Markus Gross, and Jan Novák. Neural importance sampling.

ACM TOG, 38(5):1–19, 2019. 2

[23] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM TOG, 41(4), 2022. 2, 5

[24] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2: an open-

source SLAM system for monocular, stereo and RGB-D

cameras. TRO, 33(5):1255–1262, 2017. 5

[25] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,

David Molyneaux, David Kim, Andrew J Davison, Pushmeet

Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.

KinectFusion: Real-time dense surface mapping and track-

ing. In ISMAR, pages 127–136, 2011. 1

[26] Richard A Newcombe, Steven J Lovegrove, and Andrew J

Davison. DTAM: Dense tracking and mapping in real-time.

In ICCV, pages 2320–2327, 2011. 1

[27] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and

Marc Stamminger. Real-time 3D reconstruction at scale us-

ing voxel hashing. ACM TOG, 32(6):1–11, 2013. 1

[28] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In CVPR, pages 165–174, 2019. 2

9

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu

Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-

perative style, high-performance deep learning library. In

NeurIPS, pages 8026–8037, 2019. 5

[30] Victor Reijgwart, Alexander Millane, Helen Oleynikova,

Roland Siegwart, Cesar Cadena, and Juan Nieto. Voxgraph:

Globally consistent, volumetric mapping using signed dis-

tance function submaps. RAL, 5(1):227–234, 2019. 1, 2

[31] Radu Alexandru Rosu and Sven Behnke. PermutoSDF: Fast

multi-view reconstruction with implicit surfaces using per-

mutohedral lattices. In CVPR, pages 8466–8475, 2023. 2,

5

[32] Julian Straub et al. The Replica dataset: A digital replica of

indoor spaces. arXiv preprint arXiv:1906.05797, 2019. 6, 5

[33] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davi-

son. iMAP: Implicit mapping and positioning in real-time.

In ICCV, pages 6229–6238, 2021. 1, 2, 6, 5

[34] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan Barron, and Ren Ng. Fourier features

let networks learn high frequency functions in low dimen-

sional domains. NeurIPS, 33:7537–7547, 2020. 1, 5

[35] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-

han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,

and Henrik Kretzschmar. Block-NeRF: Scalable large scene

neural view synthesis. In CVPR, pages 8248–8258, 2022. 2

[36] Yijie Tang, Jiazhao Zhang, Zhinan Yu, He Wang, and Kai

Xu. MIPS-Fusion: Multi-implicit-submaps for scalable and

robust online neural RGB-D reconstruction. arXiv preprint

arXiv:2308.08741, 2023. 3

[37] Maxim Tatarchenko, Stephan R Richter, René Ranftl,

Zhuwen Li, Vladlen Koltun, and Thomas Brox. What do

single-view 3d reconstruction networks learn? In CVPR,

pages 3405–3414, 2019. 6

[38] Zachary Teed and Jia Deng. DROID-SLAM: Deep visual

slam for monocular, stereo, and RGB-D cameras. NeurIPS,

34:16558–16569, 2021. 3

[39] Hengyi Wang, Jingwen Wang, and Lourdes Agapito. Co-

SLAM: Joint coordinate and sparse parametric encodings

for neural real-time SLAM. In CVPR, pages 13293–13302,

2023. 1, 2, 4, 5, 6, 3

[40] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku

Komura, and Wenping Wang. NeuS: Learning neural im-

plicit surfaces by volume rendering for multi-view recon-

struction. NeurIPS, 34, 2021. 2

[41] Thomas Whelan, Michael Kaess, Hordur Johannsson, Mau-

rice Fallon, John J Leonard, and John McDonald. Real-

time large-scale dense RGB-D SLAM with volumetric fu-

sion. IJRR, 34(4-5):598–626, 2014. 1, 2, 6, 3, 4

[42] Xiaoshuai Zhang, Abhijit Kundu, Thomas Funkhouser,

Leonidas Guibas, Hao Su, and Kyle Genova. Nerflets: Local

radiance fields for efficient structure-aware 3D scene repre-

sentation from 2D supervision. In CVPR, pages 8274–8284,

2023. 2

[43] Youmin Zhang, Fabio Tosi, Stefano Mattoccia, and Matteo

Poggi. GO-SLAM: Global optimization for consistent 3D

instant reconstruction. In ICCV, pages 3727–3737, 2023. 1,

3, 5, 6, 4

[44] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-

jun Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Polle-

feys. NICE-SLAM: Neural implicit scalable encoding for

SLAM. In CVPR, 2022. 1, 2, 5, 6, 3, 4

10

Neural Graph Mapping for Dense SLAM with Efficient Loop Closure

Supplementary Material

6. Method Details

6.1. Sampling Strategy

As described in Sec. 3.3 and visualized in Fig. 4, a three-

stage sampling procedure is used. First, a subset of fields

is sampled, then rays are sampled for each field, and finally

points are sampled along each ray.

Fields Especially with larger scenes, it is important that

recently added fields and those currently observed are op-

timized with a higher rate than out-of-view fields that have

already been optimized before. To achieve this, the cur-

rently observed fields Fobs
t ⊆ Ft are determined and sam-

pled with a higher probability. Specifically, a total of Nf

fields are sampled; half from the currently observed fields

and the remaining ones from all fields Ft discarding dupli-

cates.

Rays To sample supervision targets, each sampled field i
is approximated by a set of points qi

j , j = 1, ..., Napprox

sampled uniformly on the field’s sphere of radius r. These

points are projected into all keyframes. A field is considered

visible in a keyframe, if at least one of the field’s points qi
j

is inside the keyframe’s frustum and the projected depth of

qi
j is smaller than the observed depth at the projected 2D

point. This yields a set of keyframes Ki
t ⊆ Kt. Nr rays per

field (i.e., target rays) are then sampled via the 2D bounding

boxes of the projected points qi
j in the keyframes Ki

t. For

each target ray (o,d) the closest point to the field center is

computed as o+ lcd and only a ray segment [lc − r, lc + r]
covering the sphere will be considered for optimization.

Points Given a ray segment [lmin, lmax], Nup points are

uniformly sampled across the segment, and Ndp points are

uniformly sampled in the truncation interval τ around the

observed depth, that is, in the interval [lobs−τ, lobs+τ]; the

full ray interval is used, if there is no depth measurement or

lobs /∈ [lmin, lmax]. This yields a total of Np = Nup +Ndp

query points per ray segment during optimization.

In total, each optimization iteration will contain a maxi-

mum of NfNrNp query points.

6.2. K­Nearest Neighbors Queries

We compute the color and signed distance at a query point

as the weighted average of the k nearest fields. Specifically,

let x ∈ R
3 denote the query point. Let ci, si, di, i = 1, ..., k

denote the returned color, signed distance, and distance to

the field center for the k nearest fields for the query point x.

k = 1 k = 2 k = 3

ξ = 2.5 ξ = 10.0 ξ = 40.0

Excluding di > r Including di > r

Figure 12. Visualization of k-nearest neighbor distance-based av-

eraging. The top row shows the effect of varying k. The second

row shows the effect of varying ξ. The last row shows the effect

of excluding fields with distances di greater than the field radius r

from the averaging.

We compute weights based on the softmax of the negative

distances, that is,

ui =
e−ξdi

∑k
j=1 e

−ξdj

, (9)

where ξ determines the transition speed. The combined

color and signed distance are then computed as a weighted

sum, that is, c =
∑k

i=1 uici and s =
∑k

i=1 uisi.
We always use the k nearest fields even when only the

closest field is within radius r. However, we set ξ suffi-

ciently high such that the transition region becomes small

and fields with di ≫ r will have no significant contribution

to the final value. This is a feasible strategy, since fields are

optimized for all ray segments intersecting them even when

the segment is terminating outside the sphere. Hence, each

field will in practice capture a region larger than a sphere

with radius r.

Figure 12 illustrates the effect of this weighted averag-

ing for different values of ξ, k, and with and without ui = 0
for di > r on a 2D toy example with three fields of fixed

color. Note that the distance-weighted averaging leads to

smooth transitions in the overlapping regions. When forc-

1

Table 3. Overview of parameters.

Parameter Value Description

r 1m Field radius

Nf 2 Number of fields optimized in parallel in each iterations

Nr 512 Number of ray segments sampled per field during optimization

Nup 8 Number of uniformly sampled points distributed along each ray segment during optimization

Ndp 16 Number of depth-guided points distributed along each ray segment during optimization

τ 0.1m or 0.2m∗ Truncation distance; used for scaling depth-guided sampling and for capping the supervision range (i.e., dividing samples into free-

space samples and TSDF samples)

η 20.0 Determines how fast occupancy probability decays around surfaces

k 2 Number of nearest neighbors used during evaluation

ξ 10.0 Distance weighing determining transition speed between two fields

L 1 Number of MLP layers following the permutohedral encoding; excluding the final linear layer

T 212 Hash table size for permutohedral encoding

Nlevels 16 Number of resolution levels for permutohedral encoding

Nfpl 16 Number of features per level for permutohedral encoding

rcoarse 1.0 Coarsest resolution for permutohedral encoding

rfine 0.0001 Finest resolution for permutohedral encoding

λcolor 1.0 Weight of color loss

λdepth 1.0 Weight of depth loss

λfs 40.0 Weight of free-space loss

λtsdf 50.0 Weight of TSDF loss

δ 5 cm Huber loss threshold

γ 1 × 10−3 Learning rate used for Adam optimizer [13]

λ 1 × 10−5 Weight decay used for Adam optimizer [13]

∗
The truncation distance is increased for real-world datasets to account for the increase in depth noise.

ing ui = 0 for di > r transitions on the boundaries are

unavoidable, hence we opt for the strategy described in the

previous paragraph. For the experiments we use k = 2 and

ξ = 10.

6.3. Parameters

In Tab. 3 we provide a full list of parameters, the used value

to achieve the experimental results, and a brief description.

Parameters were tuned manually and the same setting is

used for all experiments (with the exception of τ , which

is increased for the real-world datasets).

7. Experiment Details

Baseline Setup All baselines are evaluated using the pa-

rameters published as part of the published code. For ad-

ditional datasets for which no parameters were provided,

the most similar dataset’s parameters were adopted (i.e.,

for Replica-Big the provided setup for Replica is used; for

Kintinuous the setup for ScanNet). Scene boundaries were

manually adjusted to cover the observed area with extra

margin to account for errors in positioning.

In our experiments, we noticed that Co-SLAM [39] uses

the ground-truth pose of the first frame to initialize the

SLAM system, which leads to axis-aligned planes. We

found that planes (such as walls, floors, and ceilings) which

are axis-aligned are significantly better completed using

the one-blob encoding [22] than generally-oriented planes.

Therefore, for a fair comparison, we modified Co-SLAM’s

implementation to start from a random orientation instead.

We note that this mainly reduces qualitative scene comple-

tion, however, on one of the Replica scenes it leads to track-

ing issues and hence poor reconstruction results. Figure 13

shows an example of the scene completion capability of

Co-SLAM with and without ground-truth initialization (i.e.,

with and without axis-aligned planes).

(a) With axis-alignment (b) Without axis-alignment

Figure 13. Co-SLAM result with and without ground-truth initial-

ization. Ground-truth initialization leads to axis-aligned walls and

floors, which in turn leads to significantly better scene completion.

7.1. Evaluation Protocol

Let Mw
gt and Mw̃

est denote the ground-truth mesh and

estimated mesh respectively. We assume that Mw̃
est has al-

ready been globally aligned with Mw
gt, which is typically

achieved by either aligning the first frame in the sequence or

by aligning the trajectories using the Umeyama algorithm.

Starting from Mw
gt and Mw̃

est further preprocessing steps

are performed before the evaluation metrics are computed.

1. Unobserved parts of the ground-truth mesh Mw
gt are

removed. In particular, we apply two removal steps.

First, vertices falling more than 2 cm outside the scene

bounding box are removed. The scene bounding box is

2

Table 4. Comparison of mesh quality on Replica (bestO, second bestO).

Replica

room0 room1 room2 offi0 offi1 offi2 offi3 offi4 Avg.

NICE-SLAM [44]

Acc (cm) 2.47 O 2.21 O 2.17 O 1.90 1.61 O 3.13 O 2.92 O 2.60 O 2.38O

Acc.-Ratio (%) 93.38 O 94.92 O 93.75O 94.87 95.30 89.78 O 90.17 O 93.21 O 93.17O

Comp. (cm) 2.93 2.31 O 2.77 O 2.37 2.15 2.89 3.42 3.91 2.84 O

Comp. Ratio (%) 90.90 93.57 O 90.97 O 92.58 92.15 88.78 86.20 85.72 90.11 O

Co-SLAM [39]

Acc (cm) 1.99O 19.90 1.92O 1.55O 1.33O 2.76O 2.61O 2.22O 4.29

Acc.-Ratio (%) 95.37O 38.68 93.51 O 96.15 O 96.75 O 90.92O 92.04O 92.70O 87.02

Comp. (cm) 2.37 O 17.47 2.08O 1.54O 1.68 O 2.39 O 2.73 O 2.47O 4.09

Comp. Ratio (%) 93.43O 40.03 93.16O 96.04O 94.57 O 91.99O 90.92O 90.96O 86.39

GO-SLAM [43]

Acc (cm) 3.45 2.15O 2.90 1.88 O 1.72 3.51 3.97 3.56 2.89

Acc.-Ratio (%) 84.59 96.04O 89.50 96.31O 97.55O 84.49 79.64 86.34 89.31

Comp. (cm) 6.83 4.26 8.46 3.12 4.17 6.74 7.43 8.39 6.18

Comp. Ratio (%) 69.44 82.89 72.65 85.21 82.89 69.40 63.81 67.33 74.20

Ours

Acc (cm) 2.63 2.25 2.86 1.88 O 2.07 3.45 4.92 2.98 2.88 O

Acc.-Ratio (%) 90.80 93.01 86.99 93.83 92.43 87.73 83.01 88.20 89.50 O

Comp. (cm) 2.25O 1.86O 3.57 1.67 O 1.79 O 2.34O 2.69O 2.67 O 2.36O

Comp. Ratio (%) 93.23 O 94.98O 89.62 95.59 O 93.34 O 91.35 O 89.40 O 89.34 O 92.11O

computed as the intersection of a manually-set bounding

box (used to exclude outliers in the depth map present

in some scenes) and an automatically computed bound-

ing box (based on the ground-truth trajectory and depth

maps). Second, vertices that are not in front or up to 3 cm
behind any rendered depth map are removed. These

depth maps are rendered from the ground-truth trajec-

tory and from additional virtual views manually placed

to improve the evaluation of scene completion (same as

in Co-SLAM [39]). This yields a culled ground-truth

mesh used for evaluation Mw ∗
gt.

2. To further equalize slight differences in alignment be-

tween different methods, we perform another alignment

step using point-to-plane-based iterative closest point

from Mw̃
est’s vertices to Mw

gt’s vertices yielding an

aligned estimated mesh Mw
est.

3. The aligned estimated mesh Mw
est follows the same

removal process as the ground-truth mesh (see step 1

above) yielding the culled estimated mesh used for eval-

uation Mw ∗
est

For the evaluation, Nsamples = 200 000 points are uni-

formly sampled on both meshes yielding the point sets

G = {xi ∼ U(Mw ∗
gt) | i = 1, ..., Nsamples} and E =

{yi ∼ U(Mw ∗
est) | i = 1, ..., Nsamples}, where U(·) de-

notes the uniform distribution. The point sets are used to

compute accuracy, completion, accuracy ratio, and comple-

tion ratio as

Acc(G, E) = 1

|E|
∑

y∈E
min
x∈G

∥y − x∥ (10)

Comp(G, E) = 1

|G|
∑

x∈G
min
y∈E

∥x− y∥ (11)

AR(G, E) = 1

|E|
∑

y∈E

[

min
x∈G

∥y − x∥ < ∆

]

(12)

CR(G, E) = 1

|G|
∑

x∈G

[

min
y∈E

∥x− y∥ < ∆

]

, (13)

where [·] denotes the Iverson bracket and ∆ = 5 cm in our

experiments. Since accuracy ratio and completion ratio can

be interpreted as precision and recall of the reconstruction,

we further use the F1-score

F1(G, E) =
2

AR(G, E)−1 +CR(G, E)−1
(14)

to summarize reconstruction performance in one metric.

8. Additional Results

Detailed Replica Results Table 4 shows per-scene results

on the Replica dataset. On most scenes Co-SLAM achieves

the best result; however, it fails on room1 leading to worse

average results. We note that our contributions do not aim

to improve scene reconstruction on small scenes and this

experiment merely serves to highlight overall competitive

results. That is, our method scales to large scale scenes by

incorporating loop closure constraints, without significantly

hurting small scene performance.

Additional Qualitative Results Figure 14 shows an ex-

tended comparison at the end of the Kintinuous [41] se-

quence. Our method is the only one that successfully closes

the loop. Co-SLAM drifts off significantly in the second

corner failing to map subsequent parts successfully.

In Fig. 15, Fig. 16, and Fig. 17 qualitative results on the

ScanNet, Replica, and NRGBD datasets are shown, respec-

tively. In most scenes our approach performs close to the

best performing method Co-SLAM, while outperforming

NICE-SLAM and GO-SLAM. Co-SLAM achieves slightly

more detailed and smoother results, which might be due

to their more effective hash table use and the additional

smoothness loss.

3

Co-SLAM [39] GO-SLAM [43] Our
L

o
o
p

C
o
rn

er
1
st

C
o
rr

id
o
r

2
n
d

C
o
rn

er

Figure 14. Qualitative comparison on the Kintinuous dataset [41] at the end of the sequence. Three views are shown. Note that our method

is the only one closing the loop successfully. The last row shows the corner in which Co-SLAM is failing (mapping a 90 degree corner as

a U-turn).

Ground-truth NICE-SLAM [44] Co-SLAM [39] GO-SLAM [43] Our

s
c
e
n
e
0
0
5
9
0
0

s
c
e
n
e
0
1
6
9
0
0

s
c
e
n
e
0
1
8
1
0
0

s
c
e
n
e
0
2
0
7
0
0

Figure 15. Qualitative comparison of final meshes extracted by all methods on the ScanNet dataset [5]. Our method fails on

scene0181 00 due to tracking issues in the underlying SLAM system in a feature-less region.

4

Ground-truth NICE-SLAM [44] Co-SLAM [39] GO-SLAM [43] Our

r
o
o
m
0

r
o
o
m
1

r
o
o
m
2

o
f
f
i
c
e
0

o
f
f
i
c
e
1

o
f
f
i
c
e
2

o
f
f
i
c
e
3

o
f
f
i
c
e
4

Figure 16. Qualitative comparison of final meshes extracted by all methods on the Replica dataset [32, 33].

5

Ground-truth NICE-SLAM [44] Co-SLAM [39] GO-SLAM [43] Our

b
r

c
k

g
r

g
w
r

k
i

m
a

s
c

t
g

w
r

Figure 17. Qualitative comparison of final meshes extracted by all evaluated methods on the NRGBD dataset [2].

6

	. Introduction
	. Related Work
	. Traditional Volumetric Loop Closure
	. Neural Field-Based Scene Representations
	. Neural Field-Based SLAM

	. Method
	. Multi-Field Scene Representation
	. Field Instantiation
	. TSDF-Based Optimization
	. Novel View Synthesis and Mesh Extraction
	. Architecture Details

	. Experiments
	. Experimental Setup
	. Reconstruction Quality Evaluation
	. Run-Time and Model Size Analysis
	. Ablation Study

	. Conclusion
	. Method Details
	. Sampling Strategy
	. K-Nearest Neighbors Queries
	. Parameters

	. Experiment Details
	. Evaluation Protocol

	. Additional Results

