import os import asyncio import argparse import gradio as gr import requests import pandas as pd from agno.agent import RunResponse from agent import agent DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" async def _async_answer(answer_text: str) -> str: response: RunResponse = await agent.arun(answer_text) return response.content class BasicAgent: def __init__(self): pass def __call__(self, task_id: str, question: str) -> str: print("[INFO] Answering question: >>>", question) return asyncio.run(_async_answer(f"{task_id}: {question}")) def run_agent(profile: gr.OAuthProfile | None, task_id: str | None = None, submit: bool = True): space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" else: return "Please log in to Hugging Face.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" files_url = f"{api_url}/files/{task_id}" try: agent_instance = BasicAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None if task_id: questions_data = [q for q in questions_data if str(q.get("task_id")) == str(task_id)] if not questions_data: return f"Task {task_id} not found.", None results_log = [] answers_payload = [] for item in questions_data: tid = item.get("task_id") qtext = item.get("question") if not tid or qtext is None: continue try: submitted_answer = agent_instance(task_id, qtext) answers_payload.append({"task_id": tid, "submitted_answer": submitted_answer}) results_log.append({"Task ID": tid, "Question": qtext, "Submitted Answer": submitted_answer}) except Exception as e: results_log.append({"Task ID": tid, "Question": qtext, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: return "No answers produced.", pd.DataFrame(results_log) if not submit: return "Test mode: nothing submitted.", pd.DataFrame(results_log) submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload, } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n" f"Message: {result_data.get('message', '')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission failed: {e}", pd.DataFrame(results_log) def run_agent_single(profile: gr.OAuthProfile | None, task_id: str): return run_agent(profile, task_id or None, submit=False) def run_agent_all(profile: gr.OAuthProfile | None, task_id: str): return run_agent(profile, task_id or None, submit=True) with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.LoginButton() task_id_input = gr.Textbox(label="Task ID (optional)", placeholder="e.g. 2023060607") run_test_button = gr.Button("Test Single Task (no submit)") run_all_button = gr.Button("Run & Submit All") status_output = gr.Textbox(label="Status", lines=5, interactive=False) results_table = gr.DataFrame(label="Results", wrap=True) run_test_button.click( fn=run_agent_single, inputs=[task_id_input], outputs=[status_output, results_table], ) run_all_button.click( fn=run_agent_all, inputs=[task_id_input], outputs=[status_output, results_table], ) gr.Markdown( "Running all tasks may take time. Use the single‑task button to debug quickly." ) if __name__ == "__main__": space_host = os.getenv("SPACE_HOST") space_id = os.getenv("SPACE_ID") if space_host: print(f"SPACE_HOST: {space_host}") if space_id: print(f"SPACE_ID: {space_id}") parser = argparse.ArgumentParser() parser.add_argument("--task-id", help="Run a single task locally without submission") args, _ = parser.parse_known_args() if args.task_id: status, table = run_agent(profile=None, task_id=args.task_id, submit=False) print(status) if table is not None: print(table) else: demo.launch(debug=True, share=False)