File size: 3,563 Bytes
22fc8c6
 
 
 
 
 
 
 
 
 
9799832
 
 
 
 
 
 
 
 
 
 
 
22fc8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd40cd
22fc8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd40cd
 
 
22fc8c6
1cd40cd
22fc8c6
 
 
 
 
1cd40cd
 
 
22fc8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd40cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""SpaceLlama3.1 demo gradio app."""

import datetime
import logging
import os

import gradio as gr
import torch
import PIL.Image
from prismatic import load
from huggingface_hub import login

# Authenticate with the Hugging Face Hub
def authenticate_huggingface():
    hf_token = os.getenv("HF_TOKEN")
    if hf_token:
        login(token=hf_token)
    else:
        raise ValueError("Hugging Face API token not found. Please set it as an environment variable named 'HF_TOKEN'.")

# Call the authentication function once at the start
authenticate_huggingface()

INTRO_TEXT = """SpaceLlama3.1 demo\n\n
| [Model](https://huggingface.co/remyxai/SpaceLlama3.1) 
| [GitHub](https://github.com/remyxai/VQASynth/tree/main) 
| [Demo](https://huggingface.co/spaces/remyxai/SpaceLlama3.1) 
| [Discord](https://discord.gg/DAy3P5wYJk) 
\n\n
**This is an experimental research model.** Make sure to add appropriate guardrails when using the model for applications.
"""

def compute(image, prompt, model_location):
    """Runs model inference."""
    if image is None:
        raise gr.Error("Image required")

    logging.info('prompt="%s"', prompt)

    # Open the image file
    if isinstance(image, str):
        image = PIL.Image.open(image).convert("RGB")

    # Set device and load the model
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    vlm = load(model_location)  # No need to pass the token again
    vlm.to(device, dtype=torch.bfloat16)

    # Prepare prompt
    prompt_builder = vlm.get_prompt_builder()
    prompt_builder.add_turn(role="human", message=prompt)
    prompt_text = prompt_builder.get_prompt()

    # Generate the text based on image and prompt
    generated_text = vlm.generate(
        image,
        prompt_text,
        do_sample=True,
        temperature=0.1,
        max_new_tokens=512,
        min_length=1,
    )
    output = generated_text.split("</s>")[0]

    logging.info('output="%s"', output)

    return output

def reset():
    """Resets the input fields."""
    return "", None

def create_app():
    """Creates demo UI."""

    with gr.Blocks() as demo:
        # Main UI structure
        gr.Markdown(INTRO_TEXT)
        with gr.Row():
            image = gr.Image(value=None, label="Image", type="filepath", visible=True)  # input
            with gr.Column():
                prompt = gr.Textbox(value="", label="Prompt", visible=True)
                model_info = gr.Markdown(label="Model Info")
                run = gr.Button("Run", variant="primary")
                clear = gr.Button("Clear")
                highlighted_text = gr.HighlightedText(value="", label="Output", visible=True)

        # Model location
        model_location = "remyxai/SpaceLlama3.1"  # Update as needed

        # Button event handlers
        run.click(
            fn=compute,
            inputs=[image, prompt, model_location],
            outputs=highlighted_text,
        )
        clear.click(fn=reset, inputs=None, outputs=[prompt, image])

        # Status
        status = gr.Markdown(f"Startup: {datetime.datetime.now()}")
        gpu_kind = gr.Markdown(f"GPU=?")
        demo.load(
            fn=lambda: [f"Model `{model_location}` loaded."],
            inputs=None,
            outputs=model_info,
        )

    return demo

if __name__ == "__main__":

    logging.basicConfig(
        level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
    )

    for k, v in os.environ.items():
        logging.info('environ["%s"] = %r', k, v)

    create_app().queue().launch()